一. 代码学会写注释
写注释并不是每一行都写上一些注释,而是在关键的地方你要把注释写的很明白,让你以后复习的时候,可以很快的理清思路。下面以两道题目为例。
以下是合并区间这道题目的相关代码:
for (int i = 0; i < intervals.length; i++) {
// 得到每个区间的第一个元素
int first = intervals[i][0];
// 得到每个区间的第二个元素
int second = intervals[i][1];
// 如果合并的列表长度为0或者合并列表的最后一个区间的右区间比当前区间的左区间小
// 证明他们不可能有交集,直接在结果集中增加一个区间即可。如(3,5),(6,7)
if (merged.size() == 0 || merged.get(merged.size() - 1)[1] < first) {
merged.add(new int[]{first, second});
} else {
// 否则,就要合并区间,如(3,5),(4,6)或者(3,7)(4,5)
merged.get(merged.size() - 1)[1] = Math.max(second, merged.get(merged.size() - 1)[1]);
}
}
这道题目我们知道一共就两种情况,要么不能合并,要么可以合并。能合并的情况是前一个区间的最右边的值大于当前区间最左边的值。不能合并的情况就正好相反。
上面这句话是非常抽象的。所以如果我们注释中能够举一些具体的例子来说明,你之后来复习的时候一看例子就会明白自己的思路,这样会节省很多复习的时间。比如:
(3, 5) (6, 7)这样的区间就是不能合并,(6, 7)只能重开一个区间。
(3, 5) (4, 6)这样的区间就是可以合并的。
以下是最长公共子序列这道题目的相关代码:
for (int i = 1; i < length1; i++) {
for (int j = 1; j < length2; j++) {
// 1.
// 如果当前两个字符串目前为止最后一个字符相等,那么我只需要知道他们两个的子序列的公共长度,再加1即可
// 比如 ****A 和 %%%%%A,A和A相等了,那么只需要看****和%%%%的最长公共子序列是多少然后加上1即可
// 2.
// 否则,假如现在是****A,%%%%B,就要看****A和%%%%的公共子序列长度与****和%%%%B的最大值是多少
if (t1[i - 1] == t2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
比如上图中,最后一个字符相等是什么情况,不等是什么情况,相信逻辑上大家都知道。那么思路是一个比较抽象的东西,如果能够举一些具体的例子放在这里就更好了。实际的例子就是形象的东西,形象的东西可以帮助我们去理解抽象的东西也有利于我们的复习。
二. N皇后II 位运算讲解
先贴上整体代码:
public void dfs(int n, int row, int lie, int pie, int na) {
// 递归终止条件, 每一次能够走到最后一行都对应N皇后的一种解法
if (row >= n) {
count+=1;
return;
}
int bits = (~(lie | pie | na)) & ((1 << n) - 1); // (1)
// 循环开始判断
while (bits != 0) {
// 取到最低的那一位
int p = bits & -bits; // (2)
// 既然决定将p这个位置放上皇后,那bits中自然要去掉他
bits = bits & (bits - 1); // (3)
// 到这里位置都是在处理当前层逻辑
dfs(n, row + 1, lie | p, (pie | p) << 1, (na | p) >> 1); // (4)
// 不需要回退lie, pie, na的状态,因为我是去与,并没有真正改掉他们的值。
}
}
1.代码注释中(1)处代码讲解:
int bits = (~(lie | pie | na)) & ((1 << n) - 1); // (1)
N皇后,我们就可以用二进制的N位来表示。如8皇后,若最终算出来的bits为0 0 0 1 0 0 1 0 表示当前层从左往右第4个格子和第7个格子是可以放皇后的,其他格子放进去都会有冲突。
所以,每一层进来,我们都要求出当前层这个int类型的数,通过他的二进制数来知道当前层是有哪些位子已经被占有了,哪些位子可以放皇后。代码中 lie, pie, na我们知道分别代表了当前层同一列,右斜上, 左斜上分别有哪些位子是不能放皇后的, 那么 (lie | pie | na) 就可以得到当前层一共有哪些位子是不能放皇后的。下面举的例子我们都以8皇后为例。
如: (lie | pie | na) = 000000000000000000000000 10101001
前面一大串0是因为int类型是32位的,所以对于8皇后而言,前面的24位都是无用的。上面的情况易知当前层第1个,第3个,第5个,第8个格子都不可以放皇后。所以我们对其取反:
则:(~(lie | pie | na)) = 111111111111111111111111 01010110, 这样最低的8位,为1的地方就是当前层可以放皇后的位置。但是这个操作做了之后,前面的24位也变成了1。而这些1是我们不需要的。所以要想办法将其干掉。(1 << n) = 000000000000000000000001 00000000 (还是以8皇后为例,这里的n就是8)
那不难得出:
((1 << n) - 1) = 000000000000000000000000 11111111。
(~(lie | pie | na)) = 111111111111111111111111 01010110(~(lie | pie | na)) & ((1 << n) - 1) = 000000000000000000000000 01010110 = bits
这个时候算出来的bits, 二进制位为1的位就真正代表可以放皇后了。
2.代码注释中(2)处代码讲解:
int p = bits & -bits; // (2)
上面代码我们得到了哪些位置可以放皇后。再来回顾下那个二进制串:
000000000000000000000000 01010110 = bits
代码(2)这个操作就是位运算操作,可以得到二进制中最低位的那个1
bits & -bits = 000000000000000000000000 00000010 = p = 2(十进制)
3.代码注释中 (3)处代码讲解:
bits = bits & (bits - 1); // (3)
000000000000000000000000 01010110 = bits
// 既然决定将p这个位置放上皇后,那bits中自然要去掉他,这样能够保证回溯回来的时候这个位子也不能再用了
bits = bits & (bits - 1) = 000000000000000000000000 01010100
4.代码注释中(4)处代码讲解:
dfs(n, row + 1, lie | p, (pie | p) << 1, (na | p) >> 1); // (4)
lie | p就是告诉下一层,有哪些列是被占着的。
pie | p就是告诉下一层,有些pie的位置是被占着的。但是我们这个是二进制位注意,pie的位子下面一层是感知不到的。举个例子:
假如当前层取到的p的位子是00001000,第五个格子放了皇后了,那么对于pie而言,下一层不能访问的是第4个格子,也就是00010000这样的表示:
00001000
00010000
所以 (pie | p) 要左移一位na正好相反:
00001000
00000100
所以 (na | p) 要右移一位
三. N皇后I 位运算讲解
// 定义结果集
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {
// 边界条件
if (n < 1) {
return res;
}
// 申请一个char棋盘
char[][] chess = new char[n][n];
// 初始化棋盘
for (char[] everyRow : chess) {
Arrays.fill(everyRow, '.');
}
// 开始回溯
dfs2(n, 0, 0, 0, 0, chess);
return res;
}
public void dfs2(int n, int row, int lie, int pie, int na, char[][] chess) {
if (row >= n) {
res.add(transfer(chess)); // 此处transfer只是把二维的char变成List<String>
return;
}
// 得到当前层的bits
int bits = (~(lie | pie | na)) & ((1 << n) - 1);
int count = 0;
while (bits != 0) {
int p = bits & -bits;
int index = (int) (Math.log(p) / Math.log(2)); // (1)根据当前p求出1在二进制中的位置
bits = bits & (bits - 1);
chess[row][n - index - 1] = 'Q'; // (2) 将当前层能够放皇后的位子放上皇后
dfs2(n, row + 1, lie | p, (pie | p) << 1, (na | p) >> 1, chess);
chess[row][n - index - 1] = '.'; // (3) 递归回来之后要回退棋盘的状态
}
}
1.代码注释中(1)位置的代码讲解:
我们每一层都要在当前行的某一列放一个皇后,所以我们要根据p这个数字求出他对应的二进制中1所在的位置,1的位置就是代表当前行皇后的列。举个例子:
00000010, 这个二进制数的十进制代表2。
实际上就是 1 * 2^1 = 2; 也就是1的位置是从右往左第1位(下标从0开始)。
而我们要求的实际上就是根据十进制的2求这个1 (指数),也就是对应二进制中1所在位置。这个就是用到了取对数
指数 = log2 (P) = log2 (2) = 1所以我们根据p就可以求出指数,也就是二进制中1的位子,也就是可以放皇后的下标(列)
index = Math.log(p) / Math.log(2) = log2 (P)
log2 (P) = loge (p) / loge (2);刚刚也说到,对00000010这个数取对数得到的1。这个是从右往左的位置,但我们的列数下标是要从左往右的
col = n - index - 1;
col = 8 - 1 -1 = 6;
这样符合我们的预期
00000010 本就代表第7列,也就是数组中下标为6的地方可以放皇后
本文分享了算法学习的心得,重点讲解了N皇后问题的位运算解法,包括如何通过位运算确定可放置皇后的列,并介绍了代码中关键步骤的作用,帮助读者理解和应用位运算解决N皇后问题。
534

被折叠的 条评论
为什么被折叠?



