经过这半年的学习和整理,笔者也逐步构建了笔者心中的 AI Infrastructure 知识体系(Body of knowledge for AI Infrastructure)的 1.0 版本(2024年10月5日),涵盖基础的硬件知识和 CUDA 编程知识,内容会随着笔者学习的深入而逐步增加新的内容,也希望大家共同讨论学习,使得知识体系更加完善。
AI Fundamentals
本仓库是一个全面的人工智能基础设施(AI Infrastructure)学习资源集合,涵盖从硬件基础到高级应用的完整技术栈。内容包括 GPU 架构与编程、CUDA 开发、大语言模型、AI 系统设计、性能优化、企业级部署等核心领域,旨在为 AI 工程师、研究人员和技术爱好者提供系统性的学习路径和实践指导。
适用人群:
AI工程师、系统架构师、GPU 编程开发者、大模型应用开发者、技术研究人员。
技术栈:CUDA、GPU架构、LLM、AI系统、分布式计算、容器化部署、性能优化。
一、硬件与基础设施
1.1 硬件基础知识
- • PCIe 知识大全 - 深入理解 PCIe 总线架构、带宽计算和性能优化
- • NVLink 入门 - NVIDIA 高速互连技术的原理与应用场景
- • NVIDIA DGX SuperPOD:下一代可扩展的 AI 领导基础设施 - 企业级 AI 超算集群的架构设计与部署实践
1.2 GPU 架构深度解析
在准备在 GPU 上运行的应用程序时,了解 GPU 硬件设计的主要特性并了解与 CPU 的相似之处和不同之处会很有帮助。本路线图适用于那些对 GPU 比较陌生或只是想了解更多有关 GPU 中计算机技术的人。不需要特定的并行编程经验,练习基于 CUDA 工具包中包含的标准 NVIDIA 示例程序。
- • GPU 特性
- • GPU 内存
- • GPU Example: Tesla V100
- • GPUs on Frontera: RTX 5000
- • 练习:
- • Exercise: Device Query
- • Exercise: Device Bandwidth
1.2.1 GPU 架构和编程模型介绍
- • GPU Architecture and Programming — An Introduction -
GPU架构与编程模型的全面介绍
1.2.2 CUDA 核心技术
- • 深入理解 NVIDIA CUDA 核心(vs. Tensor Cores vs. RT Cores)
1.3 AI 基础设施架构
- • 高性能 GPU 服务器硬件拓扑与集群组网
- • NVIDIA GH200 芯片、服务器及集群组网
- • 深度学习(大模型)中的精度
1.4 AI 基础设施课程
完整的AI基础设施技术课程体系:
- • 在线课程演示 - 交互式课程演示(包含37个页面的完整课程内容)
课程内容概览:
- • 大模型原理与最新进展:
Transformer架构、训练规模、DeepSeek技术突破、能力涌现现象 - • AI 编程技术:
GitHub Copilot、Cursor、Trae AI等工具对比,实际应用场景和效率数据 - • GPU 架构与 CUDA 编程:
GPU vs CPU对比、NVIDIA架构演进、CUDA编程模型、性能优化 - • 云原生与 AI Infra 融合:推理优化技术、量化技术、
AIBrix架构、企业级部署实践 - • 技术前沿与职业发展:行业趋势分析、学习路径规划、职业发展建议
1.5 GPU 管理与虚拟化
理论与架构:
- • GPU 虚拟化与切分技术原理解析 - 技术原理深入
- • GPU 管理相关技术深度解析 - 虚拟化、切分及远程调用 - 全面的 GPU 管理技术指南
- • 第一部分:基础理论篇 - GPU 管理基础概念与理论
- • 第二部分:虚拟化技术篇 - 硬件、内核、用户态虚拟化技术
- • 第三部分:资源管理与优化篇 - GPU 切分与资源调度算法
- • 第四部分:实践应用篇 - 部署、运维、性能调优实践
GPU 虚拟化解决方案:
- • HAMi GPU 资源管理完整指南
运维工具与实践:
- • nvidia-smi 入门
- • nvtop 入门
- • NVIDIA GPU XID 故障码解析
- • NVIDIA GPU 卡之 ECC 功能
- • 查询 GPU 卡详细参数
- • Understanding NVIDIA GPU Performance: Utilization vs. Saturation (2023)
- • GPU 利用率是一个误导性指标
1.6 分布式存储系统
JuiceFS 分布式文件系统:
- • JuiceFS 文件修改机制分析 - 分布式文件系统的修改机制深度解析
- • JuiceFS 后端存储变更手册 - JuiceFS 后端存储迁移和变更操作指南
1.7 DeepSeek 技术研究
注意:相关内容为 2025 年春节完成,需要审慎参考!
模型对比与评测:
- • DeepSeek-R1 模型对比分析 - 1.5b、7b、官网版本的性能对比与评测
- • Mac 上运行 DeepSeek-R1 模型 - 使用 Ollama 在 Mac 上本地部署 DeepSeek-R1
分布式系统设计:
- • 3FS 分布式文件系统 - 高性能分布式文件系统的设计理念与技术实现
- • 系统架构:集群管理器、元数据服务、存储服务、客户端四大组件
- • 核心技术:RDMA 网络、CRAQ 链式复制、异步零拷贝 API
- • 性能优化:FUSE 局限性分析、本地客户端设计、io_uring 启发的 API 设计
1.8 高性能网络与通信
1.8.1 InfiniBand 网络技术
- • InfiniBand 网络理论与实践 - 企业级高性能计算网络的核心技术栈
- • 技术特性:亚微秒级延迟、200Gbps+ 带宽、RDMA 零拷贝传输
- • 应用场景:大规模分布式训练、高频金融交易、科学计算集群
- • 架构优势:硬件级卸载、CPU 旁路、内存直接访问
- • InfiniBand 健康检查工具 - 网络健康状态监控和故障诊断
- • InfiniBand 带宽监控 - 实时带宽监控和性能分析
1.8.2 NCCL 分布式通信
- • NCCL 分布式通信测试套件使用指南 - NVIDIA 集合通信库的深度技术解析
- • 核心算法:AllReduce、AllGather、Broadcast、ReduceScatter 优化实现
- • 性能调优:网络拓扑感知、带宽聚合、计算通信重叠
- • 生态集成:与 PyTorch、TensorFlow、MPI 的深度集成方案
- • NCCL Kubernetes 部署 - 容器化 NCCL 集群部署方案
核心特性:
- • PXN 模式支持:专为多节点优化的高性能通信解决方案
- • 三种优化级别:保守、平衡、激进模式,满足不同性能需求
- • 智能网络检测:自动选择最佳网络配置和通信路径
- • 容器化部署:支持 Docker 和 Kubernetes 部署
- • 多节点测试:支持大规模分布式训练场景
测试工具:
- • NCCL 性能基准测试 - 支持 PXN 模式的性能测试
- • 容器化测试管理 - 容器化测试环境管理
- • 多节点测试启动器 - 原生多节点测试部署
1.9 云原生 AI 基础设施
1.9.1 Kubernetes AI 生态
- • Kubernetes AI 基础设施概述 - 企业级容器化 AI 工作负载的编排管理平台
- • Kueue + HAMi 集成方案 - GPU 资源调度与管理的云原生解决方案
- • NVIDIA Container Toolkit 原理分析 - 容器化 GPU 支持的底层机制
- • NVIDIA K8s Device Plugin 分析 - GPU 设备插件的架构与实现
核心特性:
- • 智能调度:GPU 资源共享、NUMA 拓扑感知、多优先级调度策略
- • 资源管理:GPU Operator、Node Feature Discovery、MIG Manager 统一管理
- • 可观测性:Prometheus 指标采集、Grafana 可视化、Jaeger 链路追踪
1.9.2 AI 推理服务
- • 云原生高性能分布式 LLM 推理框架 llm-d 介绍 - 基于 Kubernetes 的大模型推理框架
- • vLLM + LWS:Kubernetes 上的多机多卡推理方案 - LWS 旨在提供一种 更符合 AI 原生工作负载特点的分布式控制器语义,填补现有原语在推理部署上的能力空白
技术架构:
- • 服务治理:Istio 服务网格、Envoy 代理、智能负载均衡
- • 弹性伸缩:HPA 水平扩展、VPA 垂直扩展、KEDA 事件驱动自动化
- • 模型运营:多版本管理、A/B 测试、金丝雀发布、流量切换
1.10 性能分析与调优
1.10.1 AI 系统性能分析概述
- • AI 系统性能分析 - 企业级 AI 系统的全栈性能分析与瓶颈诊断
分析维度:
- • 多维分析:计算密集度、内存访问模式、网络通信效率、存储 I/O 性能
- • 专业工具:Nsight Systems 系统级分析、Nsight Compute 内核级优化、Intel VTune 性能调优
- • 优化方法论:算子融合策略、内存池化管理、计算通信重叠、数据流水线优化
1.10.2 GPU 性能分析
- • 使用 Nsight Compute Tool 分析 CUDA 矩阵乘法程序
- • CUDA 内核性能分析指南 - NVIDIA 官方 CUDA 内核性能分析详细指南
性能分析工具:
- • NVIDIA Nsight Compute:CUDA 内核级性能分析器
- • NVIDIA Nsight Systems:系统级性能分析器
- • nvprof:传统 CUDA 性能分析工具
关键指标与优化:
- • 硬件指标:SM 占用率、内存带宽利用率、L1/L2 缓存命中率、Tensor Core 效率
- • 内核优化:CUDA Kernel 性能调优、内存访问模式优化、线程块和网格配置
- • 分析工具:CUDA Profiler 性能剖析、Nsight Graphics 图形分析、GPU-Z 硬件监控
性能优化实践:
- • 全局内存访问模式优化:提升内存访问效率
- • 共享内存(Shared Memory)优化:利用片上高速缓存
- • 指令级并行(ILP)优化:提升计算吞吐量
- • 内存带宽利用率分析:优化数据传输性能
1.11 GPU 监控与运维工具
1.11.1 GPU 监控工具
- • GPU 监控与运维工具概述 - 企业级 GPU 集群的全方位监控与运维解决方案
- • nvidia-smi 详解 - NVIDIA 系统管理接口工具的深度使用指南与最佳实践
- • nvtop 使用指南 - 实时交互式 GPU 监控工具的高级应用
- • DeviceQuery 工具 - CUDA 设备查询工具的完整功能解析
核心特性:
- • 实时监控:GPU 利用率、核心温度、功耗曲线、显存占用、PCIe 带宽
- • 智能告警:多级阈值告警、机器学习异常检测、故障预测与预警
- • 数据可视化:Grafana 多维仪表板、历史趋势分析、性能基线报告
- • 运维自动化:基础设施即代码、配置标准化、智能故障恢复
1.11.2 GPU 性能分析
- • GPU 利用率是一个误导性指标 - 深入理解 GPU 利用率指标的局限性与替代方案
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
二、 开发与编程
本部分专注于AI开发相关的编程技术、工具和实践,涵盖从基础编程到高性能计算的完整技术栈。
2.1 AI 编程入门
- • AI 编程入门完整教程 - 面向初学者的 AI 编程完整学习路径与实践指南
- • AI 编程入门在线版本 - 交互式在线学习体验与动手实践
学习路径:
- • 理论基础:机器学习核心概念、深度学习原理、神经网络架构设计
- • 编程语言生态:Python AI 生态、R 统计分析、Julia 高性能计算在 AI 中的应用
- • 开发环境搭建:Jupyter Notebook 交互式开发、PyCharm 专业 IDE、VS Code 轻量级配置
2.2 CUDA 编程与开发
- • CUDA 核心概念详解 - CUDA 核心、线程块、网格等基础概念的深度解析
- • CUDA 流详解 - CUDA 流的原理、应用场景与性能优化
- • GPU 编程基础 - GPU 编程入门到进阶的完整技术路径
技术特色:
- • CUDA 核心架构:SIMT 线程模型、分层内存模型、流式执行模型
- • 性能调优实践:内存访问模式优化、线程同步策略、算法并行化重构
- • 高级编程特性:Unified Memory 统一内存、Multi-GPU 多卡编程、CUDA Streams 异步执行
2.3 Trae 编程实战课程
系统化的 Trae 编程学习体系:
- • 《Trae 编程实战》课程提纲 - 完整的五部分21章课程规划
- • 基础入门:环境配置、交互模式、HelloWorld项目实战
- • 场景实战:前端开发、后端API、数据库设计、安全认证
- • 高级应用:AI集成、实时通信、数据分析、微服务架构
- • 团队协作:代码质量、版本控制、CI/CD、性能优化
- • 综合项目:企业级应用开发、部署运维实战
2.4 Java AI 开发
- • Java AI 开发指南 - Java 生态系统中的 AI 开发技术
- • 使用 Spring AI 构建高效 LLM 代理 - 基于 Spring AI 框架的企业级 AI 应用开发
技术特色:
- • 企业级框架:基于成熟的 Spring 生态系统
- • 多提供商支持:统一 API 集成 OpenAI、Azure OpenAI、Hugging Face 等
- • 生产就绪:提供完整的企业级 AI 应用解决方案
- • Java 原生:充分利用 Java 生态系统的优势
2.4 CUDA 学习材料
2.4.1 快速入门
- • 并行计算、费林分类法和 CUDA 基本概念
- • CUDA 编程模型入门
- • CUDA 并发编程之 Stream 介绍
2.4.2 参考资料
- • CUDA Reading Group 相关讲座: GPU Mode Reading Group
- • 《CUDA C++ Programming Guide》
- • 《CUDA C 编程权威指南》:书中示例代码
- • Nvidia 官方 CUDA 示例
- • 《CUDA 编程:基础与实践 by 樊哲勇》
- • 学习笔记
- • 示例代码
- • 《CUDA 编程简介: 基础与实践 by 李瑜》
- • 《CUDA 编程入门》 - 本文改编自北京大学超算队 CUDA 教程讲义
- • Multi GPU Programming Models
- • CUDA Processing Streams
2.4.3 专业选手
CUDA-Learn-Notes:📚Modern CUDA Learn Notes: 200+ Tensor/CUDA Cores Kernels🎉, HGEMM, FA2 via MMA and CuTe, 98~100% TFLOPS of cuBLAS/FA2.
三、机器学习基础
本部分基于 动手学机器学习 项目,提供系统化的机器学习学习路径。
3.1 机器学习学习资源
- • 动手学机器学习 - 全面的机器学习学习资源库,包含理论讲解、代码实现和实战案例
核心特色:
- • 理论与实践结合:从数学原理到代码实现的完整学习路径
- • 算法全覆盖:监督学习、无监督学习、集成学习、深度学习等核心算法
- • 项目驱动学习:通过实际项目掌握机器学习的完整工作流程
- • 工程化实践:特征工程、模型评估、超参数调优等工程技能
3.2 基础概念与数学准备
- • 通俗理解机器学习核心概念
- • 梯度下降算法:从直觉到实践
- • 混淆矩阵评价指标
- • 误差 vs. 残差
- • 线性代数的本质 - 3Blue1Brown可视化教程
- • MIT 18.06 线性代数 - Gilbert Strang经典课程
- • 概率论与统计学基础 - 贝叶斯定理、概率分布、最大似然估计
3.2 监督学习
3.2.1 基础算法
- • KNN算法 - K近邻算法理论与实现
- • 线性回归 - 最小二乘法、正则化
- • 逻辑回归 - 分类算法基础
- • 决策树 - ID3、C4.5、CART算法
- • 支持向量机 - 核技巧与软间隔
- • 朴素贝叶斯 - 概率分类器
3.2.2 集成学习
- • 随机森林 - Bagging集成方法
- • AdaBoost - Boosting算法
- • GBDT - 梯度提升决策树
- • Stacking - 模型堆叠技术
- • 集成学习概述 - 集成学习理论与方法
3.3 无监督学习
3.3.1 聚类算法
- • K-means聚类 - 基础聚类算法
- • 层次聚类 - 凝聚与分裂聚类
- • DBSCAN - 密度聚类算法
3.3.2 降维算法
- • PCA主成分分析 - 线性降维方法
- • LDA线性判别分析 - 监督降维技术
- • PCA vs LDA比较 - 降维方法对比分析
3.3.3 概率模型
- • EM算法 - 期望最大化算法
- • 高斯混合模型 - GMM聚类方法
- • 最大似然估计 - MLE理论基础
3.4 特征工程与模型优化
3.4.1 特征工程
- • 特征工程概述 - 数据预处理、特征选择与变换
- • 特征选择方法 - 过滤法、包装法、嵌入法
- • GBDT特征提取 - 基于树模型的特征工程
- • 时间序列特征提取 - 时间序列数据处理
- • 词袋模型 - 文本特征工程
3.4.2 模型评估
- • 模型评估方法 - 评估指标与交叉验证
- • 混淆矩阵评价指标 - 分类模型性能评估
- • GridSearchCV - 超参数优化实践
- • L1 L2正则化 - 正则化方法介绍
- • SMOTE采样 - 不平衡数据处理
3.5 推荐系统与概率图模型
3.5.1 推荐系统
- • 推荐系统入门 - 推荐算法概述
- • 协同过滤算法 - 用户协同过滤与物品协同过滤
- • 基于内容的推荐 - 内容推荐算法
- • 矩阵分解推荐 - SVD推荐算法
- • 关联规则挖掘 - Apriori算法
3.5.2 概率图模型
- • 贝叶斯网络 - 概率图模型基础
- • 隐马尔可夫模型 - 序列建模与状态推断
- • 马尔可夫模型 - 马尔可夫链基础
3.6 深度学习基础
- • 深度学习概述 - 深度学习理论与实践指南
- • 神经网络基础 - 感知机、多层感知机、反向传播
- • 什么是深度学习 - 深度学习入门介绍
3.7 实战项目
- • 泰坦尼克号幸存者预测 - 特征工程与分类实战
- • 朴素贝叶斯实例 - 概率计算实例
- • RFM用户分析 - 用户价值分析
- • 电影推荐系统 - 推荐算法实战
3.8 学习资源
3.8.1 核心教材
- • 《统计学习方法》 - 李航著,算法理论基础
- • 《机器学习》 - 周志华著,西瓜书经典
- • 《模式识别与机器学习》 - Bishop著,数学严谨
3.8.2 在线资源
- • 机器学习考试复习提纲 - 考试重点总结
- • 梯度下降算法详解 - 优化算法理解
- • 机器学习核心概念 - 概念通俗解释
- • Andrew Ng机器学习课程 - Coursera经典课程
- • CS229机器学习 - 斯坦福大学课程
3.8.3 实践平台
- • Kaggle - 数据科学竞赛平台
- • Google Colab - 免费GPU环境
- • scikit-learn - Python机器学习库
四、大语言模型基础
4.1 核心技术与架构
基础理论与概念:
- • Andrej Karpathy:Deep Dive into LLMs like ChatGPT(B站视频) - 深度学习领域权威专家的 LLM 技术解析
- • 大模型基础组件 - Tokenizer - 文本分词与编码的核心技术
- • 解密大语言模型中的 Tokens - Token 机制的深度解析与实践应用
- • Tiktokenizer 在线版 - 交互式 Token 分析工具
嵌入技术与表示学习:
- • 文本嵌入(Text-Embedding) 技术快速入门 - 文本向量化的理论基础与实践
- • LLM 嵌入技术详解:图文指南 - 可视化理解嵌入技术
- • 大模型 Embedding 层与独立 Embedding 模型:区别与联系 - 嵌入层架构设计与选型策略
高级架构与优化技术:
- • 大模型可视化指南 - 大模型内部机制的可视化分析
- • 一文读懂思维链(Chain-of-Thought, CoT) - 推理能力增强的核心技术
- • 大模型的幻觉及其应对措施 - 幻觉问题的成因分析与解决方案
- • 大模型文件格式完整指南 - 模型存储与部署的技术规范
- • 混合专家系统(MoE)图解指南 - 稀疏激活架构的设计原理
- • 量化技术可视化指南 - 模型压缩与加速的核心技术
- • 基于大型语言模型的意图检测 - 自然语言理解的实际应用
4.2 参考书籍
- • 大模型基础

- • Hands-On Large Language Models

五、大模型训练
5.1 微调技术与训练策略
指令微调与监督学习:
- • Qwen 2 大模型指令微调入门实战 - 基于 Qwen 2 的指令微调完整实践流程
- • 一文入门垂域模型 SFT 微调 - 垂直领域模型的监督微调技术与应用实践
大规模模型训练实践:
- • Training a 70B model from scratch: open-source tools, evaluation datasets, and learnings - 70B 参数模型从零训练的完整技术路径与经验总结
- • Sanitized open-source datasets for natural language and code understanding: how we evaluated our 70B model - 大规模训练数据集的清洗、评估与质量控制方法
- • From bare metal to a 70B model: infrastructure set-up and scripts - 大模型训练基础设施的搭建、配置与自动化脚本
- • Open-sourcing CARBS: how we used our hyperparameter optimizer to scale up to a 70B-parameter language model - 超参数优化器在大规模模型训练中的应用与调优策略
六、大模型推理
6.1 推理系统架构设计
- • Mooncake 架构详解:以 KV 缓存为中心的高效 LLM 推理系统设计 - 新一代推理系统的架构创新与性能优化策略
6.2 模型部署与运维实践
- • 动手部署 ollama - 轻量级本地大模型部署的完整实践指南
6.3 推理优化技术体系
完整的 AI 推理优化技术文档系列,涵盖从小型到大型集群的推理优化策略:
- • AI 推理优化技术文档导航
- • 背景与目标
- • 集群规模分类与特征分析
- • 核心推理优化技术深度解析
- • 不同集群规模的技术选型策略
- • 性能评估指标体系
- • 推理服务架构设计
- • 实施建议与最佳实践
- • 参考资料与延伸阅读
- • 安全性与合规性
- • 多模态推理优化
- • 边缘推理优化
- • 场景问题解答
- • 实施检查清单
- • 总结与展望
七、企业级 AI Agent 开发
7.1 AI Agent 开发概述
- • AI Agent 开发与实践 - 企业级 AI Agent 开发的完整技术体系与最佳实践
7.2 基础理论与架构框架
- • 多智能体AI系统基础:理论与框架 - 多智能体系统的理论基础、BDI 架构和协作机制
- • 企业级多智能体AI系统构建实战 - 企业级多智能体系统的架构设计、技术选型和工程实现
7.3 上下文工程技术体系
理论基础与核心原理:
- • 上下文工程原理 - 基于中科院权威论文的系统性理论阐述与技术框架
- • 范式转变:从传统提示工程到现代上下文工程的技术演进
- • 核心机制:信息检索、智能选择、动态组装、自适应压缩和实时调整
- • 技术架构:多模态信息融合、分布式状态管理、智能组装引擎
- • 企业应用:全生命周期上下文管理和系统化自动优化策略
- • 上下文工程原理简介 - 面向开发者的深入浅出技术指南
- • 概念演进:从简单聊天机器人到复杂智能助手的技术进化路径
- • 核心特征:系统性方法论、动态优化算法、多模态融合、状态管理、智能组装
- • 技术对比:与传统提示词工程的本质区别、优势分析和应用场景
- • 基于上下文工程的 LangChain 智能体应用 - LangChain 框架的上下文工程实践指南
- • 架构设计:行为准则定义、信息接入策略、会话记忆管理、工具集成方案、用户画像构建
- • 技术实现:LangChain 与 LangGraph 的深度集成与上下文工程最佳实践
- • 问题解决:上下文污染检测、信息干扰过滤、语义混淆处理、冲突解决策略
- • 性能优化:令牌消耗控制算法、成本效益分析、延迟优化技术
7.4 AI 智能体记忆系统架构
- • AI 智能体记忆系统:理论与实践 - 智能体记忆系统的架构设计、存储策略与检索优化技术
- • 如何设计支持多轮指代消解的对话系统 - 多轮对话中的指代消解机制与上下文理解技术
- • 记忆系统代码实现 - 记忆系统的核心算法实现与工程化实践
7.5 工程实践与项目案例
7.5.1 多智能体系统工程实践
- • 多智能体系统项目 - 企业级多智能体系统的完整实现项目,包含 Docker 容器化部署、自动化测试用例和性能监控
7.5.2 多智能体训练
- • 多智能体训练课程 - 系统性的多智能体训练教程,包含理论基础、LangGraph 框架、LangSmith 监控、企业级架构和应用实践
- • 多智能体AI系统培训材料 - 5天40学时的完整培训体系
- • 多智能体系统概论 - BDI架构、协作机制、系统优势
- • LangGraph深度应用 - 工作流编排引擎深度应用
- • LangSmith监控平台集成 - 全链路追踪、告警、性能优化
- • 企业级系统架构设计与实现 - 架构设计、技术实现、代码实践
- • 应用实践与部署运维 - 智能客服、部署、最佳实践
培训特色:
- • 理论实践结合:从抽象理论到具体实现的完整转化路径
- • 技术栈全覆盖:LangGraph工作流编排 + LangSmith全链路监控
- • 企业级标准:高可用性架构、安全机制、性能优化、运维最佳实践
- • 完整项目案例:智能客服系统、内容创作平台、金融分析系统
7.6 应用案例
- • Coze 部署和配置手册 - Coze 平台的部署配置指南
7.7 RAG 技术
- • RAG 技术概述
- • 从 0 到 1 快速搭建 RAG 应用
- • 配套代码
- • Evaluating Chunking Strategies for Retrieval 总结
- • 中文 RAG 系统 Embedding 模型选型技术文档
7.8 AI Agent 框架与工具
Python 生态:
- • LangChain + 模型上下文协议(MCP):AI 智能体 Demo
- • AI Agents for Beginners 课程之 AI 智能体及使用场景简介
- • MCP 深度解析与 AI 工具未来
- • LangGraph 实战:用 Python 打造有状态智能体
- • 使用 n8n 构建多智能体系统的实践指南
- • 开源大语言模型应用编排平台:Dify、AnythingLLM、Ragflow 与 n8n 的功能与商用许可对比分析
Java 生态:
- • 使用 Spring AI 构建高效 LLM 代理 - Spring AI 代理模式实现指南
- • 代理系统架构:工作流 vs 代理的设计理念对比
- • 五种基本模式:链式工作流、路由工作流、并行化、编排、评估
- • 企业级实践:可预测性、一致性、可维护性的平衡
- • 技术实现:Spring AI 的模型可移植性和结构化输出功能
7.9 模型上下文协议(MCP)
- • MCP 深度解析与 AI 工具未来
八、 实践案例
8.1 模型部署与推理
- • 动手部署 ollama
8.2 文档处理工具
- • 深入探索:AI 驱动的 PDF 布局检测引擎源代码解析
- • 上海人工智能实验室开源工具 MinerU 助力复杂 PDF 高效解析提取
- • Markitdown 入门
- • DeepWiki 使用方法与技术原理深度分析
8.3 特定领域应用
- • 读者来信:请问 7b 阅读分析不同中医古籍的能力怎么样?可以进行专项训练大幅度提高这方面能力么?
- • 中国大陆合同审核要点清单
- • 让用户"说半句"话也能懂:ChatBox 的意图识别与语义理解机制解析
九、工具与资源生态
9.1 AI 系统学习资源与知识体系
AISystem - 企业级 AI 系统学习的完整知识体系与技术栈,涵盖:
- • 系统介绍 - AI 系统概述、发展历程与技术演进路径
- • 硬件基础 - AI 芯片架构、硬件加速器与计算平台深度解析
- • 编译器技术 - AI 编译器原理、优化技术与工程实践
- • 推理优化 - 模型推理加速技术、性能调优与部署策略
- • 框架设计 - AI 框架架构设计、分布式计算与并行优化
9.2 AI 基础设施专业课程体系
- • 大模型原理与最新进展 - 交互式在线课程平台
- • AI Infra 课程演讲稿 - 完整的课程演讲内容、技术要点与实践案例
- • 学习目标:深入理解大模型工作原理、最新技术进展与企业级应用实践
- • 核心内容:
- • Transformer 架构深度解析:编码器-解码器结构、多头注意力机制、文本生成过程
- • 训练规模与成本分析:GPT-3/4、PaLM 等主流模型的参数量、训练成本和资源需求
- • DeepSeek 技术突破:V1/V2/R1 三代模型演进、MLA 架构创新、MoE 稀疏化优化
- • 能力涌现现象研究:规模效应、临界点突破、多模态融合发展趋势
- • AI 编程工具生态:GitHub Copilot、Cursor、Trae AI 等工具对比分析与应用实践
- • GPU 架构与 CUDA 编程:硬件基础、并行计算原理、性能优化策略
- • 云原生 AI 基础设施:现代化 AI 基础设施设计、容器化部署与运维实践
9.3 开源项目生态与技术选型
大模型与推理框架:
- • DeepSeek - 基于 Transformer 的高性能中文大模型,具备强大的推理能力与多语言支持
- • unsloth - 高效大模型微调框架,支持 Llama 3.3、DeepSeek-R1 等模型 2 倍速度提升与 70% 内存节省
- • ktransformers - 灵活的大模型推理优化框架,提供前沿的推理加速技术
文档处理与数据预处理:
- • unstructured - 企业级非结构化数据处理库,支持自定义预处理流水线与机器学习数据准备
- • MinerU - 高质量 PDF 转换工具,支持 Markdown 和 JSON 格式输出,适用于文档智能化处理
- • markitdown - Microsoft 开源的文档转换工具,支持多种办公文档格式到 Markdown 的高质量转换
十、如何学习AI大模型?
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案

大模型全套视频教程

200本大模型PDF书籍

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集

大模型产品经理资源合集

大模型项目实战合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓


695

被折叠的 条评论
为什么被折叠?



