一、map函数
map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。
例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9]
如果希望把list的每个元素都作平方,就可以用map()函数:
因此,我们只需要传入函数f(x)=x*x,就可以利用map()函数完成这个计算:
def f(x):
return x*x
print map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
输出结果:
[1, 4, 9, 10, 25, 36, 49, 64, 81]
注意:map()函数不改变原有的 list,而是返回一个新的 list。
利用map()函数,可以把一个 list 转换为另一个 list,只需要传入转换函数。
由于list包含的元素可以是任何类型,因此,map() 不仅仅可以处理只包含数值的 list,事实上它可以处理包含任意类型的 list,只要传入的函数f可以处理这种数据类型。
例:
假设用户输入的英文名字不规范,没有按照首字母大写,后续字母小写的规则,请利用map()函数,把一个list(包含若干不规范的英文名字)变成一个包含规范英文名字的list:
输入:['adam', 'LISA', 'barT']
输出:['Adam', 'Lisa', 'Bart']
def format_name(s):
return s.capitalize()
print(list(map(format_name,['adam', 'LISA', 'barT'])))
二、reduce函数
reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。
reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代物)的过程中,首先把 前两个元素传给 函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。 如果传入了 initial 值, 那么首先传的就不是 sequence 的第一个和第二个元素,而是 initial值和 第一个元素。经过这样的累计计算之后合并序列到一个单一返回值
from functools import reduce
def add(x,y):
return 10*x+y
print(reduce(add,[1,2,3,4,5]))
print(reduce(lambda x,y:10*x+y,[1,2,3,4,5]))
注:python 社区推荐写可读性好的代码,有更好的选择时不建议用reduce,所以 python 2 中内置的reduce 函数 移到了 functools模块中
三、filter 函数
python内建的filter函数用于过滤序列,和map类似,filter()也接受一个函数和一个序列,和map不同的是filter把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例:
import math def is_sqr(x): return math.sqrt(x)%1==0 print(filter(is_sqr, [1, 2, 4, 5, 6, 9, 10, 15]))
输出:
啊,?,这是为啥 ,
度娘说:必须将filter函数转换为list
可以了!!