1045 快速排序

1045 快速排序 (25 分)

著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?

例如给定 $N = 5$, 排列是1、3、2、4、5。则:

  • 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
  • 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
  • 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
  • 类似原因,4 和 5 都可能是主元。

因此,有 3 个元素可能是主元。

输入格式:

输入在第 1 行中给出一个正整数 N(≤10​5​​); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 10​9​​。

输出格式:

在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。

输入样例:

5
1 3 2 4 5

输出样例:

3
1 4 5
#include<iostream>
#include<algorithm>
using namespace std;

//此代码没有排序,用左右递推法

//简单方法:
//前面的数比它小,后面的数比它大,则排好序后,对应位置若相等即主元
//但是注意,如3 2 4 1 5,排好序1 2 3 4 5中2与对应位置相等
//可2不是主元.....故仍需从左到右遍历一遍选取最大值
//排序后对应位置相等且等于最大值就是主元


int A[100050], L[100050];//从左到右选取最大值存入L
int a[100050];//存储满足主元条件的数
int main() {
	int n,minn = 1e10, num = 0;
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> A[i];
	}
	L[0] = A[0];
	for (int i = 1; i < n; i++) {
    L[i] = max(A[i],L[i-1]);
	}
	for (int i = n - 1; i >= 0; i--) {
	  minn =min(minn,A[i]);
		if (A[i] == L[i] && A[i] == minn) {
			a[num++] = A[i];
		}
	}
	cout << num << endl;
	if (num==0)	cout << endl; //注意当num=0时仍要换行
	for (int i = num - 1; i >= 0; i--) {
		if (i != num - 1)	cout << " ";
		cout << a[i];
	}
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值