2018年第九届蓝桥杯C/C++ B组 第六题 矩阵求和

本文介绍了蓝桥杯竞赛中的一道数学编程题,要求计算特定矩阵中所有元素的和,其中元素值为最大公约数的平方。题目提供了数据范围和输入输出格式,并讨论了简单的暴力解法会超时的问题。文章提出了通过欧拉函数和莫比乌斯反演来优化求解,并简述了这两种方法的思路。
摘要由CSDN通过智能技术生成

f(d) = \sum_{d|n}^{ }\mu (\frac{n}{d})g(d) = \sum_{d|n}^{ }\mu (\frac{n}{d}) \left ( \frac{N}{n} \right )^2标题:矩阵求和


经过重重笔试面试的考验,小明成功进入 Macrohard 公司工作。
今天小明的任务是填满这么一张表:
表有 n 行 n 列,行和列的编号都从1算起。
其中第 i 行第 j 个元素的值是 gcd(i, j)的平方,
gcd 表示最大公约数,以下是这个表的前四行的前四列:
1  1  1  1
1  4  1  4
1  1  9  1
1  4  1 16


小明突然冒出一个奇怪的想法,他想知道这张表中所有元素的和。
由于表过于庞大,他希望借助计算机的力量。


「输入格式」
一行一个正整数 n 意义见题。


「输出格式」
一行一个数,表示所有元素的和。由于答案比较大,请输出模 (10^9 + 7)(即:十亿零七) 后的结果。


「样例输入」
4


「样例输出」
48


「数据范围」
对于 30% 的数据,n <= 1000
存在 10% 的数据,n = 10^5
对于 60% 的数据,n <= 10^6
对于 1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值