深度学习
文章平均质量分 55
liangbaqiang
这个作者很懒,什么都没留下…
展开
-
flask框架的深度学习模型部署
环境:python3.7第一种:使用Flask远程上传图片到服务器,然后返回一个json目录结构搭建服务器:import flaskfrom flask import Flask,make_responsefrom tools import *import ioimport time# 调用flask初始化一个appapp = Flask(__name__)model = Noneuse_gpu = Truedef load_model(): global mode原创 2021-05-10 20:09:16 · 811 阅读 · 0 评论 -
Dice系数(Dice coefficient)与mIoU与Dice Loss
Dice系数和mIoU是语义分割的评价指标,在这里进行了简单知识介绍。讲到了Dice顺便在最后提一下Dice Loss,以后有时间区分一下在语义分割中两个常用的损失函数,交叉熵和Dice Loss。 一、Dice系数 1.概念理解 Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值范围在[0,1]: 其中 |X∩Y| 是X和Y之间的交集,|X|和|Y|分表表示X和Y的元素的个数,其中,分子的系数为2,是因为分母存在重复计算X和Y之间...转载 2021-03-22 15:06:17 · 2629 阅读 · 0 评论 -
yolov5转rt问题
电脑上先装的cuda10,再装vs2015,由于某些原因再装cuda9,导致vs2015支持cuda9,在现在是改正的。上面说cuda环境是从 .props文件 继承的,所以再重装cuda10,只装vs相关部分,可以看到在vs文件下有CUDA 10.0.props文件解决。注释:要先vs支持cuda,要先装vs,再装cuda,装cuda时会有环境检测到vs,有vs选项的...原创 2021-02-03 11:55:32 · 188 阅读 · 0 评论 -
目标检测之非极大值抑制(NMS)各种变体
简介最近比较忙,很长时间没分享了.本想着今天把这篇文章全部完成,结果下班回家时忘记车停在哪里,在单位地库找了20多分钟才找到,脑子闷闷的,今天这篇文章中还有点未完成,后期会补上.好了,进入正题.NMS(Non Maximum Suppression),又名非极大值抑制,是目标检测框架中的后处理模块,主要用于删除高度冗余的bbox,先用图示直观看看NMS的工作机制: 从上述可视化的结果可以看出,在目标检测过程中,对于每个obj在检测的时候会产生多个bbox,NMS本质就是对每个obj的多个bbox去冗余,得到转载 2021-01-21 11:23:53 · 1985 阅读 · 0 评论 -
深度学习基础loss和目标检测loss总结
深度学习Loss总结–目标检测: 1-5为基础的loss总结 6-:都是目标检测中,比较实用,比较新的loss 1. nn.L1Loss loss_fn = torch.nn.L1Loss(reduce=False, size_average=False)1 文章的最下方会解释什么是鲁棒,稳定解等 2 nn.smoo...转载 2021-01-18 17:10:35 · 6973 阅读 · 0 评论 -
一文看尽物体检测中的各种FPN
一文看尽物体检测中的各种FPNhttps://zhuanlan.zhihu.com/p/148738276?utm_source=wechat_session&utm_medium=social&utm_oi=1276930651766558720&utm_campaign=shareopn&s_r=0转载 2021-01-08 17:11:39 · 298 阅读 · 0 评论 -
深入浅出YOLOv5
https://mp.weixin.qq.com/s/XEDl37pG8zUvHyJ0iZFCPQ本文作者:江大白https://zhuanlan.zhihu.com/p/172121380转载 2021-01-08 16:22:44 · 1211 阅读 · 0 评论 -
深入浅出Yolov3和Yolov4
https://mp.weixin.qq.com/s/2AR6ON9CrREYnqnOjLkSnw转载 2021-01-08 16:21:11 · 301 阅读 · 0 评论 -
梯度累加实现 “显存扩大“
PyTorch中的梯度累加 使用PyTorch实现梯度累加变相扩大batch PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎 https://www.zhihu.com/question/303070254/answer/573037166 这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation) 传统的训练函数,一个batch是这么训练的:for i,(images,target) in...原创 2021-01-08 14:07:06 · 495 阅读 · 0 评论 -
多方向目标检测《Gliding vertex on the horizontal bounding box for multi-oriented object detection》
github链接:https://github.com/MingtaoFu/gliding_vertex《Gliding vertex on the horizontal bounding box for multi-oriented object detection》是华中科大白翔老师的新作,发表于2019年11月21号。该文章是用来做物体检测的,有意思的是发挥了白翔老师在OCR方面的特长。一般的物体检测都是使用一个非旋转矩形来表示一个物体,文章认为对于长条形的物体(例如斜着的中文句子,航拍的船舶等),原创 2020-09-15 11:17:06 · 1552 阅读 · 0 评论 -
关于计算loss
一、def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data原创 2020-09-14 15:12:27 · 2293 阅读 · 0 评论 -
ap的计算
根据检测到的结果:如下有7幅图像,其中15个地面真实对象由绿色边界框表示,24个检测到的对象由红色边界框表示。每个检测到的物体都有一个置信水平,…,Y)。下表显示了边界框及其相应的置信度。最后一列将检测结果标识为TP或FP。在本例中,如果IOU>30%,否则它就是一个FP。通过查看上面的图像,我们可以大致判断出检测是TP还是FP。(P表示正样本,通过预测的bbox与ground truth的iou确定为正样本或负样本)在一些图像中,有一个以上的检测与ground truth交叉(图...原创 2020-09-08 15:57:41 · 9927 阅读 · 3 评论 -
特征尺寸和卷积神经网络感受野的计算
神经网络感受野计算普通卷积感受野计算感受野指的是当前的特征图的一个特征点在输入空间影响的区域,该点的值被输入空间的这个区域影响,与其他区域无5173。通常有两种方式可以计算感受野,从后往前算和从前往后算。从前往后计算的方法很简单,基本上一个公式就可以计算,使用递推公式计算。 L表示感受野的大小,k表示网络的层序号,f表示卷积核尺寸,s表示步长大小。递推公式的增量为后一部分,对于第k层,其卷积核为fk...原创 2020-09-08 10:00:42 · 1124 阅读 · 0 评论 -
利用face_alignment检测人脸68个特征点并对齐
1.安装face_alignment 包,和dlib 包pip install face_alignment pip install dlib==19.6.1我的torch是1.2.0的2.实现import cv2import mathimport numpy as npimport face_alignmentclass FaceDetect: def __init__(self, device, detector): # landmarks will be原创 2020-09-07 16:00:27 · 3305 阅读 · 0 评论 -
关于pytorch grid_sample()
torch.nn.functional.grid_sample(input, grid, mode='bilinear', padding_mode='zeros')在这里的一点误解,导致debug接近两周的时间grid (N x OH x OW x 2) 对于outp...原创 2020-07-21 16:13:44 · 458 阅读 · 0 评论 -
Error(s) in loading state_dict for DataParallel
关于PyTorch模型保存与导入的一些注意点:1.没有使用并行计算:import torch.nn as nn class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(2, 2, 1) ...原创 2020-07-21 10:36:32 · 1186 阅读 · 1 评论 -
nvcc -V版本与(nvidia-smi)CUDA版本不一致
在win10中显卡驱动只能安装一个,但是可以同时安装多个版本的cudanvcc -V显示的是环境变量中的NVIDIA版本,如:也可以在环境变量中将低版本cuda移到最上方,来进行切换,如个人理解。原创 2020-07-15 15:01:26 · 8480 阅读 · 0 评论 -
深度学习CV行业失业工具包大集合
深度学习CV行业失业工具包大集合序言一、目标检测工具箱1.1 mmdetection1.2 Detectron21.3 SimpleDet1.4 PaddleDetetion二、语义分割工具箱2.1 semantic-segmentation-pytorch2.2 Semantic-Segmentation-Keras三、OCR工具箱3.1 chineseocr_lite3.2 PaddleOCR四、实例分割工具箱4....转载 2020-06-10 09:25:16 · 659 阅读 · 0 评论 -
查看pb模型的节点
查看pb模型的节点原创 2020-06-01 17:39:23 · 1285 阅读 · 0 评论 -
conda在指定环境下安装包
conda在指定环境下安装包 有两个方法可以实现方法一:conda install -n 环境名 包名举个例子,在名字为test_env的环境中安装tensorflowxxxx$ conda install -n test_env tensorflow 方法二:进入环境,在环境里用conda安装举个例子,在名...原创 2020-05-29 15:04:58 · 2978 阅读 · 0 评论 -
打标工具
对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。...转载 2019-10-14 14:15:40 · 969 阅读 · 0 评论