**
迷失の搜索树
**
Time Limit: 1000MS Memory Limit: 65536KB
Submit Statistic
Problem Description
小璐在机缘巧合之下获得了一个二叉搜索树,这个二叉搜索树恰好有n个节点,每个节点有一个权值,每个节点的权值都在[1,n]这个区间内,并且两两不相同,真是优美的性质啊
但是命运的不公又让她失去了这个二叉搜索树
幸运的是,她还记得自己丢失的二叉搜索树的前序遍历序列。
在丢了二叉搜索树之后,小璐无比想念她的这个树的后序遍历
那么问题来了,聪明的你在知道这个二叉搜索树的前序遍历的序列的情况下,能帮她找到这个二叉搜索树的后序遍历嘛?
Input
多组输入,以文件结尾
每组数据第一行为一个整数n,代表这个二叉搜索树的节点个数(1<=n<=100)
接下来一行n个整数,代表这个二叉搜索树的前序遍历序列
Output
输出n个整数
表示这个二叉树的后序遍历序列
Example Input
5
4 2 1 3 5
Example Output
1 3 2 5 4
Hint
二叉查找树是一棵空树,或者是具有下列性质的二叉树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值
它的左、右子树也分别为二叉排序树
Author
2016暑假集训结训赛 by QAQ
PS:注意以上关于二叉搜索树的说明
题意很明显,就是在知道一棵二叉搜索树的前序排列的情况下,求出它的后序排列
AC Code:
#include<bits/stdc++.h>
using namespace std;
struct node
{
int data;
struct node *lc, *rc;
};
void creat(struct node *&root, int st)//同样的根据前序建树
{
if(root==NULL)
{
root= new node;
root->lc=NULL;
root->rc=NULL;
root->data= st;
}
else
{
if(st < root->data)
creat(root->lc,st);
else
creat(root->rc,st);
}
}
int st2[1000] = {0}, st3[1000] = {0};
int i = 0;
void LRD(struct node * root)//后序遍历
{
if(root)
{
LRD(root->lc);
LRD(root->rc);
st3[i++] = root->data;
}
}
int main()
{
int n;
while(cin>>n)
{
int st[1000] = {0};
struct node*root = NULL;
for(i = 0; i < n; i++)
{
cin>>st[i];
creat(root, st[i]);
}
i = 0;
LRD(root);
for(i = 0; i< n; i++)
{
if(i == 0)
cout<<st3[i];
else
cout<<" "<<st3[i];
}
cout<<endl;
memset(st3,0,sizeof(st3));
}
return 0;
}
209

被折叠的 条评论
为什么被折叠?



