快速排序(三种算法实现和非递归实现)

快速排序(Quick Sort)是对冒泡排序的一种改进,基本思想是选取一个记录作为枢轴,经过一趟排序,将整段序列分为两个部分,其中一部分的值都小于枢轴,另一部分都大于枢轴。然后继续对这两部分继续进行排序,从而使整个序列达到有序。

递归实现:

void QuickSort(int* array,int left,int right)
{
	assert(array);
	if(left >= right)//表示已经完成一个组
	{
		return;
	}
	int index = PartSort(array,left,right);//枢轴的位置
	QuickSort(array,left,index - 1);
	QuickSort(array,index + 1,right);
}

PartSort()函数是进行一次快排的算法。
对于快速排序的一次排序,有很多种算法,我这里列举三种。

左右指针法

  1. 选取一个关键字(key)作为枢轴,一般取整组记录的第一个数/最后一个,这里采用选取序列最后一个数为枢轴。
  2. 设置两个变量left = 0;right = N - 1;
  3. 从left一直向后走,直到找到一个大于key的值,right从后至前,直至找到一个小于key的值,然后交换这两个数。
  4. 重复第三步,一直往后找,直到left和right相遇,这时将key放置left的位置即可。

这里写图片描述

当left >= right时,一趟快速排序就完成了,这时将Key和array[left]的值进行一次交换。
一次快排的结果:4 1 3 0 2 5 8 6 7 9

基于这种思想,可以写出代码:

int PartSort(int* array,int left,int right)
{
	int& key = array[right];
	while(left < right)
	{
		while(left < right && array[left] <= key)
		{
			++left;
		}
		while(left < right && array[right] >= key)
		{
			--right;
		}
		swap(array[left],array[right]);
	}
	swap(array[left],key);
	return left;
}

问题:下面的代码为什么还要判断left < right?

while(left < right && array[left] <= key)

key是整段序列最后一个,right是key前一个位置,如果array[right]这个位置的值和key相等,满足array[left] <= key,然后++left,这时候left会走到key的下标处。

###挖坑法

  1. 选取一个关键字(key)作为枢轴,一般取整组记录的第一个数/最后一个,这里采用选取序列最后一个数为枢轴,也是初始的坑位。
  2. 设置两个变量left = 0;right = N - 1;
  3. 从left一直向后走,直到找到一个大于key的值,然后将该数放入坑中,坑位变成了array[left]。
  4. right一直向前走,直到找到一个小于key的值,然后将该数放入坑中,坑位变成了array[right]。
  5. 重复3和4的步骤,直到left和right相遇,然后将key放入最后一个坑位。

这里写图片描述

当left >= right时,将key放入最后一个坑,就完成了一次排序。
注意,left走的时候right是不动的,反之亦然。因为left先走,所有最后一个坑肯定在array[right]。

写出代码:

int PartSort(int* array,int left,int right)
{
	int key = array[right];
	while(left < right)
	{
		while(left < right && array[left] <= key)
		{
			++left;
		}
		array[right] = array[left];
		while(left < right && array[right] >= key)
		{
			--right;
		}
		array[left] = array[right];	 
	}
	array[right] = key;
	return right;
}

###前后指针法

  1. 定义变量cur指向序列的开头,定义变量pre指向cur的前一个位置。
  2. 当array[cur] < key时,cur和pre同时往后走,如果array[cur]>key,cur往后走,pre留在大于key的数值前一个位置。
  3. 当array[cur]再次 < key时,交换array[cur]和array[pre]。

通俗一点就是,在没找到大于key值前,pre永远紧跟cur,遇到大的两者之间机会拉开差距,中间差的肯定是连续的大于key的值,当再次遇到小于key的值时,交换两个下标对应的值就好了。

带着这种思想,看着图示应该就能理解了。
这里写图片描述

下面是实现代码:

int PartSort(int* array,int left,int right)
{
	if(left < right){
		int key = array[right];
		int cur = left;
		int pre = cur - 1;
		while(cur < right)
		{
			while(array[cur] < key && ++pre != cur)//如果找到小于key的值,并且cur和pre之间有距离时则进行交换。注意两个条件的先后位置不能更换,可以参照评论中的解释
			{
				swap(array[cur],array[pre]);
			}
			++cur;
		}
		swap(array[++pre],array[right]);
		return pre;
	}
	return -1;
}

最后的前后指针法思路有点绕,多思考一下就好了。它最大的特点就是,左右指针法和挖坑法只能针对顺序序列进行排序,如果是对一个链表进行排序, 就无用武之地了。

所以记住了,前后指针这个特点!


###快速排序的优化

首先快排的思想是找一个枢轴,然后以枢轴为中介线,一遍都小于它,另一边都大于它,然后对两段区间继续划分,那么枢轴的选取就很关键。

1、三数取中法
上面的代码思想都是直接拿序列的最后一个值作为枢轴,如果最后这个值刚好是整段序列最大或者最小的值,那么这次划分就是没意义的。
所以当序列是正序或者逆序时,每次选到的枢轴都是没有起到划分的作用。快排的效率会极速退化。

所以可以每次在选枢轴时,在序列的第一,中间,最后三个值里面选一个中间值出来作为枢轴,保证每次划分接近均等。

2、直接插入
由于是递归程序,每一次递归都要开辟栈帧,当递归到序列里的值不是很多时,我们可以采用直接插入排序来完成,从而避免这些栈帧的消耗。

整个代码:

//三数取中
int GetMid(int* array,int left,int right)
{
    assert(array);
    int mid = left + ((right - left)>>1);
    if(array[left] <= array[right])
    {
        if(array[mid] <  array[left])
            return left;
        else if(array[mid] > array[right])
            return right;
        else
            return mid;
    }
    else
    {
        if(array[mid] < array[right])
            return right;
        else if(array[mid] > array[left])
            return left;
        else
            return mid;
    }

}

//左右指针法
int PartSort1(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
    swap(array[mid],array[right]);
    
    int& key = array[right];
    while(left < right)
    {
        while(left < right && array[left] <= key)//因为有可能有相同的值,防止越界,所以加上left < right
            ++left;
        while(left < right && array[right] >= key)
            --right;

        swap(array[left],array[right]);
    }

    swap(array[left],key);
    return left;
}

//挖坑法
int PartSort2(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
    swap(array[mid],array[right]);
    
    int key = array[right];
    while(left < right)
    {
        while(left < right && array[left] <= key)
            ++left;
        array[right] = array[left];
       
        while(left < right && array[right] >= key)
            --right;
        array[left] = array[right];
    }
    array[right] = key;
    return right;
}

//前后指针法
int PartSort3(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
	swap(array[mid],array[right]);
    if(left < right){
	    int key = array[right];
	    int cur = left;
	    int pre = left - 1;
	    while(cur < right)
	    {
	         while(array[cur] < key && ++pre != cur)
	         {
	             swap(array[cur],array[pre]);
	         }
	            ++cur;
	    }
	        swap(array[++pre],array[right]);
	        return pre;
	}
	return -1;
}

void QuickSort(int* array,int left,int right)
{
    assert(array);
    if(left >= right)
        return;

	//当序列较短时,采用直接插入
    if((right - left) <= 5)
    InsertSort(array,right-left+1);
    
    int index = PartSort3(array,left,right);
    QuickSort(array,left,index-1);
    QuickSort(array,index+1,right);
}

int main()
{
	int array[] = {4,1,7,6,9,2,8,0,3,5};
	QuickSort(array,0,sizeof(array)/sizeof(array[0]) -1);//因为传的是区间,所以这里要 - 1;
}

非递归实现

递归的算法主要是在划分子区间,如果要非递归实现快排,只要使用一个栈来保存区间就可以了。
一般将递归程序改成非递归首先想到的就是使用栈,因为递归本身就是一个压栈的过程。

void QuickSortNotR(int* array,int left,int right)
{
	assert(array);
	stack<int> s;
	s.push(left);
	s.push(right);//后入的right,所以要先拿right
	while(!s.empty)//栈不为空
	{
		int right = s.top();
		s.pop();
		int left = s.top();
		s.pop();
		
		int index = PartSort(array,left,right);
		if((index - 1) > left)//左子序列
		{
			s.push(left);
			s.push(index - 1);
		}
		if((index + 1) < right)//右子序列
		{
			s.push(index + 1);
			s.push(right);
		}
	}
}

上面就是关于快速排序的一些知识点,如果哪里有错误,还望指出。

评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值