描述
设计LRU(最近最少使用)缓存结构,该结构在构造时确定大小,假设大小为K,并有如下两个功能
- set(key, value):将记录(key, value)插入该结构
- get(key):返回key对应的value值
提示 :
- 某个key的set或get操作一旦发生,认为这个key的记录成了最常使用的,然后都会刷新缓存。
- 当缓存的大小超过K时,移除最不经常使用的记录。
- 输入一个二维数组与K,二维数组每一维有2个或者3个数字,第1个数字为 opt,第2,3个数字为key,value
若opt=1,接下来两个整数key, value,表示set(key, value)
若opt=2,接下来一个整数key,表示get(key),若key未出现过或已被移除,则返回-1
对于每个opt=2,输出一个答案 - 为了方便区分缓存里key与value,下面说明的缓存里key用""号包裹
进阶:你是否可以在O(1)的时间复杂度完成set和get操作
示例1
输入:[[1,1,1],[1,2,2],[1,3,2],[2,1],[1,4,4],[2,2]],3
返回值:[1,-1]
说明:
[1,1,1],第一个1表示opt=1,要set(1,1),即将(1,1)插入缓存,缓存是{"1"=1}
[1,2,2],第一个1表示opt=1,要set(2,2),即将(2,2)插入缓存,缓存是{"1"=1,"2"=2}
[1,3,2],第一个1表示opt=1,要set(3,2),即将(3,2)插入缓存,缓存是{"1"=1,"2"=2,"3"=2}
[2,1],第一个2表示opt=2,要get(1),返回是[1],因为get(1)操作,缓存更新,缓存是{"2"=2,"3"=2,"1"=1}
[1,4,4],第一个1表示opt=1,要set(4,4),即将(4,4)插入缓存,但是缓存已经达到最大容量3,移除最不经常使用的{"2"=2},插入{"4"=4},缓存是{"3"=2,"1"=1,"4"=4}
[2,2],第一个2表示opt=2,要get(2),查找不到,返回是[1,-1]
示例2
输入:[[1,1,1],[1,2,2],[2,1],[1,3,3],[2,2],[1,4,4],[2,1],[2,3],[2,4]],2
返回值:[1,-1,-1,3,4]
解体思路
思路一
最简单的方法,使用LinkedHashMap,重写removeEldestEntry方法即可,代码如下:
public int[] LRU(int[][] operators, int k) {
// write code here
LinkedHashMap<Integer, Integer> integerIntegerLinkedHashMap = new LinkedHashMap(16, 0.75f, true) {
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > k;
}
};
ArrayList<Integer> result = new ArrayList<>();
for (int i = 0; i < operators.length; i++) {
int length = operators[i].length;
if (length == 2) {
Integer integer = integerIntegerLinkedHashMap.get(operators[i][1]);
if (integer == null) {
result.add(-1);
} else {
result.add(integer);
}
} else {
integerIntegerLinkedHashMap.put(operators[i][1], operators[i][2]);
}
}
int[] ints = new int[result.size()];
for (int i = 0; i < ints.length; i++) {
ints[i] = result.get(i);
}
return ints;
}
复杂度分析:
时间复杂度:O(N),需要遍历数组一次。
空间复杂度:O(K),LinkedHashMap的长度。
思路二
使用Queue和Hashmap,Queue保存数组位置和大小,Hashmap用来保存数据,代码如下:
public int[] LRU(int[][] operators, int k) {
// write code here
HashMap<Integer, Integer> hashMap = new HashMap<>();
Queue<Integer> queue = new LinkedList<>();
ArrayList<Integer> result = new ArrayList<>();
for (int i = 0; i < operators.length; i++) {
if (queue.size() > k) {
Integer poll = queue.poll();
hashMap.remove(poll);
}
if (operators[i][0] == 1) {
if (queue.contains(operators[i][1])) {
queue.remove(operators[i][1]);
}
queue.offer(operators[i][1]);
hashMap.put(operators[i][1], operators[i][2]);
} else {
Integer integer = hashMap.get(operators[i][1]);
if (integer != null) {
result.add(integer);
} else {
result.add(-1);
}
if (queue.contains(operators[i][1])) {
queue.remove(operators[i][1]);
queue.offer(operators[i][1]);
}
}
}
int[] ints = new int[result.size()];
for (int i = 0; i < ints.length; i++) {
ints[i] = result.get(i);
}
return ints;
}
复杂度分析:
时间复杂度:O(N*K),需要遍历数组一次,队列remove需要O(K)的复杂度。
空间复杂度:O(K),队列用来存储数据。