牛客例题一百遍:设计LRU缓存结构

本文详细介绍了如何设计LRU缓存结构,通过实例和两种不同的实现思路,包括LinkedHashMap和Queue+HashMap,探讨了如何在O(1)时间复杂度下完成set和get操作。通过示例和复杂度分析,帮助理解LRU的工作原理及其实现技巧。
摘要由CSDN通过智能技术生成

描述

设计LRU(最近最少使用)缓存结构,该结构在构造时确定大小,假设大小为K,并有如下两个功能

  1. set(key, value):将记录(key, value)插入该结构
  2. get(key):返回key对应的value值

提示 :

  1. 某个key的set或get操作一旦发生,认为这个key的记录成了最常使用的,然后都会刷新缓存。
  2. 当缓存的大小超过K时,移除最不经常使用的记录。
  3. 输入一个二维数组与K,二维数组每一维有2个或者3个数字,第1个数字为 opt,第2,3个数字为key,value
    若opt=1,接下来两个整数key, value,表示set(key, value)
    若opt=2,接下来一个整数key,表示get(key),若key未出现过或已被移除,则返回-1
    对于每个opt=2,输出一个答案
  4. 为了方便区分缓存里key与value,下面说明的缓存里key用""号包裹

进阶:你是否可以在O(1)的时间复杂度完成set和get操作

示例1

输入:[[1,1,1],[1,2,2],[1,3,2],[2,1],[1,4,4],[2,2]],3
返回值:[1,-1]
说明:
[1,1,1],第一个1表示opt=1,要set(1,1),即将(1,1)插入缓存,缓存是{"1"=1}
[1,2,2],第一个1表示opt=1,要set(2,2),即将(2,2)插入缓存,缓存是{"1"=1,"2"=2}
[1,3,2],第一个1表示opt=1,要set(3,2),即将(3,2)插入缓存,缓存是{"1"=1,"2"=2,"3"=2}
[2,1],第一个2表示opt=2,要get(1),返回是[1],因为get(1)操作,缓存更新,缓存是{"2"=2,"3"=2,"1"=1}
[1,4,4],第一个1表示opt=1,要set(4,4),即将(4,4)插入缓存,但是缓存已经达到最大容量3,移除最不经常使用的{"2"=2},插入{"4"=4},缓存是{"3"=2,"1"=1,"4"=4}
[2,2],第一个2表示opt=2,要get(2),查找不到,返回是[1,-1]

示例2

输入:[[1,1,1],[1,2,2],[2,1],[1,3,3],[2,2],[1,4,4],[2,1],[2,3],[2,4]],2
返回值:[1,-1,-1,3,4]

解体思路

思路一

最简单的方法,使用LinkedHashMap,重写removeEldestEntry方法即可,代码如下:

 public int[] LRU(int[][] operators, int k) {
        // write code here
        LinkedHashMap<Integer, Integer> integerIntegerLinkedHashMap = new LinkedHashMap(16, 0.75f, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry eldest) {
                return size() > k;
            }
        };
        ArrayList<Integer> result = new ArrayList<>();
        for (int i = 0; i < operators.length; i++) {
            int length = operators[i].length;
            if (length == 2) {
                Integer integer = integerIntegerLinkedHashMap.get(operators[i][1]);
                if (integer == null) {
                    result.add(-1);
                } else {
                    result.add(integer);
                }
            } else {
                integerIntegerLinkedHashMap.put(operators[i][1], operators[i][2]);
            }
        }
        int[] ints = new int[result.size()];
        for (int i = 0; i < ints.length; i++) {
            ints[i] = result.get(i);
        }
        return ints;
    }

复杂度分析:
时间复杂度:O(N),需要遍历数组一次。
空间复杂度:O(K),LinkedHashMap的长度。

思路二

使用Queue和Hashmap,Queue保存数组位置和大小,Hashmap用来保存数据,代码如下:

 public int[] LRU(int[][] operators, int k) {
        // write code here
        HashMap<Integer, Integer> hashMap = new HashMap<>();
        Queue<Integer> queue = new LinkedList<>();
        ArrayList<Integer> result = new ArrayList<>();
        for (int i = 0; i < operators.length; i++) {
            if (queue.size() > k) {
                Integer poll = queue.poll();
                hashMap.remove(poll);
            }
            if (operators[i][0] == 1) {
                if (queue.contains(operators[i][1])) {
                    queue.remove(operators[i][1]);
                }
                queue.offer(operators[i][1]);
                hashMap.put(operators[i][1], operators[i][2]);
            } else {
                Integer integer = hashMap.get(operators[i][1]);
                if (integer != null) {
                    result.add(integer);
                } else {
                    result.add(-1);
                }
                if (queue.contains(operators[i][1])) {
                    queue.remove(operators[i][1]);
                    queue.offer(operators[i][1]);
                }
            }
        }
        int[] ints = new int[result.size()];
        for (int i = 0; i < ints.length; i++) {
            ints[i] = result.get(i);
        }
        return ints;
    }

复杂度分析:
时间复杂度:O(N*K),需要遍历数组一次,队列remove需要O(K)的复杂度。
空间复杂度:O(K),队列用来存储数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值