题目:矩阵中的最长递增路径
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
解法一:可以看作一种拓扑排序过程,通过计算拓扑序列的长度计算最长长度,即剥洋葱算法
class Solution {
public:
int dir[4][2] = { {0, 1}, {0, -1}, {1, 0}, {-1, 0} }; //方向数组:记录四个方向
int longestIncreasingPath(vector<vector<int>>& matrix) {
int ans = 0;
vector<int> leave;
if (matrix.size() == 0) return 0; //判断所给矩阵是否为空
int m = matrix.size();
int n = matrix[0].size();
vector<vector<int>> outdegree( m, vector<int>(n, 0) ); //记录顶点的出度
//记录每个顶点的出度
for(int i = 0; i < m; i++)
for (int j = 0; j < n; j++) {
for (int k = 0; k < 4; k++) {
if (i + dir[k][0] >= 0 && i + dir[k][0] < m && j + dir[k][1] >= 0 && j + dir[k][1] < n && matrix[i][j] < matrix[i + dir[k][0]][j + dir[k][1]])
outdegree[i][j]++;
}
}
//拓扑排序的逆过程
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (outdegree[i][j] == 0)
leave.push_back(i*n + j);
//" 剥洋葱过程 "
while (!leave.empty()) {
ans++;
vector<int> newLeave;
for (int i = 0; i < leave.size(); i++) {
int x = leave[i] / n;
int y = leave[i] % n;
for (int k = 0; k < 4; k++) {
if (x + dir[k][0] >= 0 && x + dir[k][0] < m && y + dir[k][1] >= 0 && y + dir[k][1] < n && matrix[x][y] > matrix[x + dir[k][0]][y + dir[k][1]])
if (--outdegree[x + dir[k][0]][y + dir[k][1]] == 0)
newLeave.push_back((x + dir[k][0])*n + y + dir[k][1]);
}
}
leave = newLeave;
}
return ans;
}
};
解法二:DFS+记忆化
记忆化定义:在计算中,记忆化是一种优化技术,它通过存储“昂贵”的函数调用的结果,在相同的输入再次出现时返回缓存的结果,以此加快程序的速度。
class Solution {
public:
int dir[4][2] = { {0, 1}, {0, -1}, {1, 0}, {-1, 0} }; //方向数组:记录四个方向
int m;
int n;
int longestIncreasingPath(vector<vector<int>>& matrix) {
int ans = 0;
vector<int> leave;
if (matrix.size() == 0) return 0; //判断所给矩阵是否为空
m = matrix.size();
n = matrix[0].size();
vector<vector<int>> cache(m, vector<int>(n, 0)); //记录顶点的出度
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
ans = max(ans, dfs(matrix, i, j, cache));
return ans;
}
int dfs(vector<vector<int>>& matrix, int x, int y, vector<vector<int>>& cache) {
if (cache[x][y] != 0)return cache[x][y];
for (int i = 0; i < 4; i++)
if (x + dir[i][0] >= 0 && x + dir[i][0] < m && y + dir[i][1] >= 0 && y + dir[i][1] < n && matrix[x][y] < matrix[x + dir[i][0]][y + dir[i][1]])
cache[x][y] = max(cache[x][y], dfs(matrix, x + dir[i][0], y + dir[i][1], cache));
//cache[x][y] = max(cache[x][y], dfs(matrix, x + dir[i][0], y + dir[i][1], cache) + 1); //错误:注意不能在此处加1,否则返回结果出错,因为最大的结点没有计算在内
return ++cache[x][y];
}
};