Codeforces Round #413 B. T-shirt buying

本文介绍了一个关于T恤选购的算法问题,买家根据自己的喜好选择最便宜的T恤,重点在于如何通过数据结构优化搜索过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

B. T-shirt buying
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A new pack of n t-shirts came to a shop. Each of the t-shirts is characterized by three integers piai and bi, where pi is the price of the i-th t-shirt, ai is front color of the i-th t-shirt and bi is back color of the i-th t-shirt. All values pi are distinct, and values ai and bi are integers from 1 to 3.

m buyers will come to the shop. Each of them wants to buy exactly one t-shirt. For the j-th buyer we know his favorite color cj.

A buyer agrees to buy a t-shirt, if at least one side (front or back) is painted in his favorite color. Among all t-shirts that have colors acceptable to this buyer he will choose the cheapest one. If there are no such t-shirts, the buyer won't buy anything. Assume that the buyers come one by one, and each buyer is served only after the previous one is served.

You are to compute the prices each buyer will pay for t-shirts.

Input

The first line contains single integer n (1 ≤ n ≤ 200 000) — the number of t-shirts.

The following line contains sequence of integers p1, p2, ..., pn (1 ≤ pi ≤ 1 000 000 000), where pi equals to the price of the i-th t-shirt.

The following line contains sequence of integers a1, a2, ..., an (1 ≤ ai ≤ 3), where ai equals to the front color of the i-th t-shirt.

The following line contains sequence of integers b1, b2, ..., bn (1 ≤ bi ≤ 3), where bi equals to the back color of the i-th t-shirt.

The next line contains single integer m (1 ≤ m ≤ 200 000) — the number of buyers.

The following line contains sequence c1, c2, ..., cm (1 ≤ cj ≤ 3), where cj equals to the favorite color of the j-th buyer. The buyers will come to the shop in the order they are given in the input. Each buyer is served only after the previous one is served.

Output

Print to the first line m integers — the j-th integer should be equal to the price of the t-shirt which the j-th buyer will buy. If the j-th buyer won't buy anything, print -1.

Examples
input
5
300 200 400 500 911
1 2 1 2 3
2 1 3 2 1
6
2 3 1 2 1 1
output
200 400 300 500 911 -1 
input
2
1000000000 1
1 1
1 2
2
2 1
output
1 1000000000 


题目大意是:p为衣服价值,a为衣服前面的颜色,b为衣服后面的颜色,m是买的人有多少个。c是这些人喜欢的颜色。

如果这些人能在剩下的衣服中找到自己想要的颜色的衣服就买下来 当然是买当前最便宜的嘛。


#include <bits/stdc++.h>
//#include <ext/pb_ds/tree_policy.hpp>
//#include <ext/pb_ds/assoc_container.hpp>
//using namespace __gnu_pbds;
using namespace std;


#define pi acos(-1)
#define endl '\n'
#define me(x) memset(x,0,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0);
#define rand() srand(time(0));
typedef long long LL;
typedef pair<int, int> pii;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
//const int dx[]={-1,0,1,0,-1,-1,1,1};
//const int dy[]={0,1,0,-1,1,-1,1,-1};
const int maxn=1e3+5;
const int maxx=2e5+100;
const double EPS=1e-9;
const int MOD=1000000007;
#define mod(x) ((x)%MOD);
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
//typedef tree<pt,null_type,less< pt >,rb_tree_tag,tree_order_statistics_node_update> rbtree;
/*lch[root] = build(L1,p-1,L2+1,L2+cnt);
    rch[root] = build(p+1,R1,L2+cnt+1,R2);中前*/
/*lch[root] = build(L1,p-1,L2,L2+cnt-1);
    rch[root] = build(p+1,R1,L2+cnt,R2-1);中后*/
long long gcd(long long a , long long b){if(b==0) return a;a%=b;return gcd(b,a);}

inline int Scan()
{
    int res=0,ch,flag=0;
    if((ch=getchar())=='-')flag=1;
    else if(ch>='0' && ch<='9')res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')res=res*10+ch-'0';
    return flag ? -res : res;
}
struct node
{
    int p,a,b;
}Q[maxx];
map<int,int >vis;
stack<int >s1,s2,s3;
bool cmp(node A,node B)
{
    if(A.p!=B.p)
        return A.p>B.p;//价格排序 因为用到stack 所以最大值放最前面
}
int c[maxx];
int main()
{
    int n,m,x;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        Q[i].p=Scan();
    for(int i=1;i<=n;i++)
        Q[i].a=Scan();
    for(int i=1;i<=n;i++)
        Q[i].b=Scan();
    sort(Q+1,Q+n+1,cmp);
    scanf("%d",&m);
    for(int i=1;i<=n;i++)
    {
        vis[Q[i].p]=0;
        if(Q[i].a==1||Q[i].b==1)
            s1.push(Q[i].p);//分三个stack分别在1-2-3颜色里找衣服的价格
        if(Q[i].a==2||Q[i].b==2)
            s2.push(Q[i].p);
        if(Q[i].a==3||Q[i].b==3)
            s3.push(Q[i].p);
    }
    for(int i=1;i<=m;i++)
    {
        int flag=0;
        scanf("%d",&x);
        if(x==1)
        {
            while(!s1.empty())
            {
                int h=s1.top();
                s1.pop();
                if(vis[h]==0)
                {
                    printf("%d ",h);
                    vis[h]=1;
                    flag=1;
                    break;
                }
            }
            if(!flag)
                printf("-1 ");
        }
        if(x==2)
        {
            while(!s2.empty())
            {
                int h=s2.top();
                s2.pop();
                if(vis[h]==0)
                {
                    printf("%d ",h);
                    vis[h]=1;
                    flag=1;
                    break;
                }
            }
            if(!flag)
                printf("-1 ");
        }
        if(x==3)
        {
            while(!s3.empty())
            {
                int h=s3.top();
                s3.pop();
                if(vis[h]==0)
                {
                    printf("%d ",h);
                    vis[h]=1;
                    flag=1;
                    break;
                }
            }
            if(!flag)
                printf("-1 ");
        }
    }

}




























内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值