这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点、重复边。那么 在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成。容易发现,来回走是没有任何意义的,因为来回走意味着抵消。考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情况。我的做法是任意地先找出一条从1到n的路径,把这条路径上的xor和作为ans初值(先不管为什么可行),然后我们的任务就变成了求若干个环与这个ans初值所能组合成的xor最大值。显然,我们需要预处理出图上所有的环,并处理出所有环的环上xor值,这当然是dfs寻找,到n的路径的时候顺便求一下就可以了。
当我们得到了若干个环的xor值之后,因为是要求xor最大值,我们就可以构出这所有xor值的线性基。构出之后,再用ans在线性基上取max就可以了。
/// .-~~~~~~~~~-._ _.-~~~~~~~~~-.
/// __.' ~. .~ `.__
/// .'// \./ \\`.
/// .'// | \\`.
/// .'// .-~"""""""~~~~-._ | _,-~~~~"""""""~-. \\`.
/// .'//.-" `-. | .-' "-.\\`.
/// .'//______.============-.. \ | / ..-============.______\\`.
/// .'______________________________\|/______________________________`.
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;
#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X)
#define S_1(x) scan_d(x)
#define S_2(x,y) scan_d(x),scan_d(y)
#define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
typedef long long LL;
typedef pair <int, int> ii;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,1,-1,-1,1};
const int dy[]={0,1,0,-1,-1,1,-1,1};
const int maxn=1e5+10;
const int maxx=1e3+10;
const double EPS=1e-8;
const double eps=1e-8;
const int mod=1e9+7;
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
template <class T>
inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}
inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
if(IsN) num=-num;return true;}
void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
void print(LL a){ Out(a),puts("");}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;
int head[maxn];
int vis[maxn];
int cnt,tot;
LL data[maxn*2],dis[maxn];
LL p[65];
struct edge
{
int u,v,next;
LL w;
}e[maxn*4];
void add(int y,int x,LL z)
{
e[++tot]=(edge){x,y,head[x],z};head[x]=tot;
e[++tot]=(edge){y,x,head[y],z};head[y]=tot;
}
void dfs(int x)
{
vis[x]=1;
for(int i=head[x];i;i=e[i].next)
if(!vis[e[i].v])
dis[e[i].v]=dis[x]^e[i].w,
dfs(e[i].v);
else
data[++cnt]=dis[x]^dis[e[i].v]^e[i].w,
cnt-=(!data[cnt]);
}
int n,m;
void solve()
{
W(cin>>n>>m)
{
me(vis,0);
tot=0;
FOR(1,m,i)
{
int u,v;
LL w;
S_3(u,v,w);
add(u,v,w);
}
dfs(1);
FOR(1,cnt,i)
{
fOR(63,0,j)
{
if(!(data[i]>>j&1)) continue;
if(!p[j]){p[j]=data[i];break;}
data[i]^=p[j];
}
}
LL ans=dis[n];
fOR(63,0,i)
if(!(ans>>i&1)) ans^=p[i];
print(ans);
}
}
int main()
{
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
int t=1;
//init();
//s_1(t);
for(int cas=1;cas<=t;cas++)
{
//printf("Case #%d: ",cas);
solve();
}
}