Halcon
文章平均质量分 67
黑桃不带K
这个作者很懒,什么都没留下…
展开
-
Halcon图像处理之图像增强
图像增强可以有很多种理解,但是作者认为无论是什么形式的增强其实它的本质都是图像加有效信息的操作,它的目的都是获取特征更为明显的图像。简单的说,图像增强大致可以分为三种1、分辨率增强 2、对比度及灰度增强 3、特征增强需要图像增强的原因:1 图像噪点过大,影响感观、影响计算机对图像特征的提取2 图像因为光线环境等造成整体对比度不足或局部过暗、过曝。细节损失3 图像白平衡系数未校准造成图像偏色4 图像因采集时镜头失焦等问题造成的模糊5 图像由于运动速度过快 (采集一帧时间内发生了剧烈运动),形成.原创 2022-03-17 17:07:19 · 10261 阅读 · 0 评论 -
Halcon图像处理入门篇(五)
实际上图像处理的主要作用有两个:1、是获取图像信息 2、是描述图像。入门篇(四)所述特征的描述就是一种描述信息的方式。而本篇要讲的是获取图像信息的一种,即获取图像任意区域或点的位置信息。映射是图像处理中常用的一种坐标转换方式。没错,其本质就是把图像中的像素坐标与另一个坐标产生一一对应的关系,其数学本质就是线性的矩阵变换:A = WB标定...原创 2022-03-15 16:34:47 · 5062 阅读 · 0 评论 -
halcon图像处理之基于深度学习的分类
halcon提供了基于它自身的深度学习框架,虽然深入学习基本算法框架上没有提供改动的接口,但对应用上确实做到了便捷性。也是基于这种特性,halcon在深度学习模块方面也具有自身特色,博主认为其主要特设在于 1、代码集成度高、便捷性高 2、可视化手段多样 3、针对性比较明显,且易于传统算法和深度学习算法的结合等。1、深度学习算法基本概述 深度学习顾名思义就是通过深度的神经网络进行特征提取与学习,最终得到准确的学习结果的一种方式。一般,深度学习算法都采用python进行开发,主要的开发框架有tensor原创 2022-02-10 17:44:06 · 5285 阅读 · 1 评论 -
Halcon图像处理入门篇(四)
传统图像和深度学习最本质的区别在于传统图像通过一系列的方法获取目标,包括滤波、阈值、二值化、灰度梯度变化等。但本质上,他们都是在获取图像特征,即对特征进行表述。深度学习是通过大量的数据得到对特征的表述,所以网络越叠越大。随着训练数据的增加模型也越来越大。而传统方法则泛化性极差,曝光时间、稍微的变形或干扰都有可能导致对目标的错误输出,所以很多时候传统图像处理都是在调参过程中完成开发。但是,不管哪种方法都有其具体的特定应用场景,都是在对特征的筛选、匹配、计算以及定位。所以,本篇主要讲一讲基于halcon的特征.原创 2021-11-12 15:13:50 · 3768 阅读 · 0 评论 -
Halcon图像处理入门篇(三)
常用的Halcon操作无外乎是图像、Region、XLD三者之间的转换,也是基于这样的定于,Halcon才有别于其他的图像处理工具。在了解了图像、Region、XLD三者的基本操作外我们需要进一步的了解三者间的转换。一、开篇笔者在前述入门篇中忽略了图像数据的操作,这里的主要原因是因为相关图像操作和Opencv实在是太多重合的地方了,所以没有多加赘述。但是,Halcon也有许多Opencv所不具备的图像操作,使得相关算法及功能变得更加简洁而易于操作,以下为相关补充:1、图像的拼接:tile_imag原创 2021-11-12 11:28:04 · 3966 阅读 · 0 评论 -
Halcon图像处理入门篇(二)
Halcon图像处理入门篇之C++ 上一篇说到过halcon的特点在于它实现了从halcon自创语言到C、C++、Java、Python、C#语言的转换,从而为基于图像类的开发节省了大量的宝贵时间。本篇开篇将以C++为例阐述Halcon从验证脚本和C++的无缝连接。1、开发环境,VS2015,Halcon20.112、测试项目开发环境搭建1、关于halcon 的License,详情请见4y9b提取码:4y9b2、halcon转换为C++3、VS配置 // Local ic原创 2021-10-23 11:42:37 · 2431 阅读 · 0 评论 -
Halcon图像处理入门篇(一)
Halcon图像处理1、halcon的数据类型2、halcon的基本组成3、基于halcon的图像处理4、标定5、C#halcon联合编程6、C++halcon联合编程7、总结原创 2021-10-20 11:38:41 · 11730 阅读 · 0 评论