【C++】TinyXML读取xml文件用法详解

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

TinyXML下载地址:https://sourceforge.net/projects/tinyxml/
官方文档:TinyXML

TinyXML是个解析库,它由两个头文件(.h文件)和四个CPP文件(.cpp文件)构成,用的时候,只要将(tinyxml.h、tinystr.h、tinystr.cpp、tinyxml.cpp、tinyxmlerror.cpp、tinyxmlparser.cpp)导入工程就可以用它的东西了。如果需要,可以将它做成自己的DLL来调用。

XML文件理解

举一个官方文档《TinyXML Tutorial》中的例子

<?xml version="1.0" ?>
<MyApp>
<!-- Settings for MyApp -->
<Messages>
	<Welcome>Welcome to MyApp</Welcome>
	<Farewell>Thank you for using MyApp</Farewell>
</Messages>
<Windows>
<Window name="MainFrame" x="5" y="15" w="400" h="250" />
</Windows>
<Connection ip="192.168.0.1" timeout="123.456000" />
</MyApp>

XML是树形结构,有层数之分,其结点分为不同的类别,而TinyXML中针对不同类别定义了不同的类,下面简单介绍一下:(粗体是常用的)

  • <?xml version="1.0" ?>,TiXmlDeclaration,声明类
  • <MyApp>,TiXmlElement,元素类,该结点是根节点,后续的每个<></>都是一个结点
  • <!-- Settings for MyApp -->,TiXmlComment,注释类
  • Welcome to MyApp,TiXmlText,文本类,获取元素中的文本
  • TiXmlAttribute,属性类,name,x,y,w,h都是Window元素的属性

常用的XML类方法使用

接下来我们以一个目标检测的标签文件为例,来读取其中的boundingbox坐标信息。
XML文件:

<annotation>
	<folder>JPEGImages</folder>
	<filename>409.bmp</filename>
	<path>E:\JPEGImages\409.bmp</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>847</width>
		<height>419</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>512</xmin>
			<ymin>153</ymin>
			<xmax>693</xmax>
			<ymax>325</ymax>
		</bndbox>
	</object>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>251</xmin>
			<ymin>251</ymin>
			<xmax>321</xmax>
			<ymax>313</ymax>
		</bndbox>
	</object>
</annotation>

文件中有两个boundingbox

获取bndbox元素下的最大最小坐标:

#include <iostream>
//打开xml文件需要加载的头文件
#include "tinystr.h"
#include "tinyxml.h"
#include <string>
#include<typeinfo>
using namespace std;

int main()
{
    //创建xml文件对象,并读取xml
    TiXmlDocument doc;
    doc.LoadFile("409.xml");

    //获取xml中根元素,并输出根节点的值,为<annotation>
    TiXmlElement *root = doc.FirstChildElement();
    cout << root->Value() << endl;

    //获取根节点孩子,输出节点值,输出节点的内容,Text是char*
    TiXmlElement *child = root->FirstChildElement();
    cout << child->Value() << endl;
    cout << child->GetText() << endl;
    cout << strlen(child->GetText())<< endl;
    //cout <<typeid(child->GetText()).name()<< endl;

    /*目标:找到xmin,xmax,ymin,ymax*/
    int xmin1,ymin1,xmax1,ymax1;
    //从根节点的第一个孩子节点开始遍历
    while(child!=NULL)
    {
        if(child->ValueTStr() == "object")
        {
            TiXmlElement *box = child->FirstChildElement();
            while(box->ValueTStr()!="bndbox")
            {
                box = box->NextSiblingElement();
            }

            TiXmlElement *xmin = box->FirstChildElement();
             xmin1 = atoi(xmin->GetText());
            //NextSiblingElement()获得同一层下一个节点
            TiXmlElement *ymin = xmin->NextSiblingElement();
             ymin1 = atoi(ymin->GetText());

            TiXmlElement *xmax = ymin->NextSiblingElement();
             xmax1 = atoi(xmax->GetText());

            TiXmlElement *ymax = xmax->NextSiblingElement();
             ymax1 = atoi(ymax->GetText());

             cout<<xmin1<<endl;
             cout<<ymin1<<endl;
             cout<<xmax1<<endl;
             cout<<ymax1<<endl;

        }
        child = child->NextSiblingElement();
    }

    /*
    cout<<xmin1<<endl;
    cout<<ymin1<<endl;
    cout<<xmax1<<endl;
    cout<<ymax1<<endl;
    */
    
    /*一些其他方法的测试*/
    /*
    //获取兄弟节点中的size节点
    TiXmlElement *brother = child->NextSiblingElement("size");
    cout << brother->Value() << endl;
    //cout << typeid(brother->GetText()).name()<< endl;

    //获取size节点下的属性值,<>中的属性,本例没有属性
    //cout <<brother->Attribute("width")<<endl;
    //找size下面节点width
    TiXmlElement *brother_child = brother->FirstChildElement();
    cout << brother_child->Value() << endl;
    cout << brother_child->GetText() << endl;

    //读取到内容,并转为int型,因为项目需要int数据
    int width = atoi(brother_child->GetText());
    cout << width << endl;
    */

    return 0;
}

总结

  1. 主要是链表相关知识。
  2. 常用的解析xml的方法。
  3. char*转int类型用atoi,转float用atof,typeid返回变量类型。
Transformer是一种基于自注意力机制(self-attention)的神经网络架构,由Google于2017年提出,主要应用于自然语言处理领域。相较于传统的循环神经网络(RNN)和卷积神经网络(CNN),Transformer模型在处理长文本时具有更好的表现。 Transformer模型主要由编码器(Encoder)和解码器(Decoder)两部分组成,其中编码器用于将输入序列转换为一系列的特征向量,解码器则将这些特征向量转换为目标序列。下面分别对编码器和解码器进行解析: 1. 编码器 编码器主要由多层的自注意力模块(self-attention)和前馈神经网络(Feed-Forward Network)构成。自注意力模块可以对输入序列中的每个位置进行加权处理,从而更好地捕捉序列中的上下文信息。具体来说,自注意力模块将输入序列中的每个位置都看作是查询(Query)、键(Key)和值(Value)三部分,通过计算它们之间的相似度,并对值进行加权平均,得到最终的特征向量。这里的相似度计算可以使用点积(Dot-Product)、缩放点积(Scaled Dot-Product)、加性注意力(Additive Attention)等不同的方法。 2. 解码器 解码器也由多层的自注意力模块和前馈神经网络构成,但它还包括一个额外的编码器-解码器注意力模块(Encoder-Decoder Attention)。这个模块可以将编码器的输出作为键和值,将解码器的输入作为查询,从而在生成目标序列时获取更多的上下文信息。具体来说,解码器的每一层会先进行自注意力计算,然后再将自注意力输出与编码器的输出进行编码器-解码器注意力计算,最后再进行前馈神经网络的计算。 总之,Transformer模型通过自注意力机制和编码器-解码器注意力机制,有效地捕捉了输入序列和目标序列之间的关系,从而取得了优异的性能。同时,由于每个位置的计算都可以并行处理,因此Transformer模型也具有更好的训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值