【图像超分】论文复现:Pytorch实现FSRCNN,包含详细实验流程和与SRCNN的比较

本文详细介绍了基于Pytorch复现FSRCNN的过程,包括网络结构、训练、测试及与SRCNN的比较。FSRCNN通过改进网络结构,提升了超分辨率性能,同时模型大小更小。实验结果显示,FSRCNN在PSNR上表现优于SRCNN,但在SSIM上稍逊。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### FSRCNN 训练性能评估结果析 #### PSNR 图像质量对比 FSRCNN 的表现通过峰值信噪比 (PSNR) 进行了量化评价。实验结果显示,在多个放大比例因子下,FSRCNN 在大多数情况下都过了其他方法[^1]。具体而言,当其他竞争性方法如 KK[28] A+[5] 对比时,即使这些方法使用不同数据集进行训练,FSRCNN 依然表现出更好的重建效果。 #### 数据集影响 值得注意的是,FSRCNN 是在特定的数据集(即91图像 General-100)上训练得到的。这表明该模型能够很好地适应并优化针对这两个数据集的特点,从而实现更高的 PSNR 值其他指标上的优势。 #### 不同版本间的差异 对于较小规模的模型变体(例如 FSRCNN-s),虽然整体架构相似,但由于参数数量减少,其恢复质量确实不如较大规模的同类模型(如 SRCNN-Ex 或 SCN)。这种差距尤其体现在细节保留方面;小模型容易产生所谓的“锯齿”现象或振铃效应,而大模型则能更好地保持边缘平滑度纹理清晰度。 ```python import cv2 from skimage.metrics import peak_signal_noise_ratio as psnr, structural_similarity as ssim def evaluate_model_performance(original_image_path, reconstructed_image_path): original = cv2.imread(original_image_path) reconstruced = cv2.imread(reconstructed_image_path) # Calculate PSNR and SSIM between the two images score_psnr = psnr(original, reconstruced) score_ssim = ssim(original, reconstruced, multichannel=True) return { 'psnr': score_psnr, 'ssim': score_ssim } ``` 此代码片段展示了如何利用 Python 库计算原始图片重构后的高辨率图片之间的 PSNR 及结构相似指数测量(SSIM),这是衡量辨算法性能的重要手段之一。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值