第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)
文章目录
前言
一些缩写说明:
- LR:模型输入input,低分辨率图像
- HR:模型标签label/target,高分辨率图像,也即GT(ground-truth)
- SR:LR经过模型超分后的结果,即super-resolution result。
- benchmarks:一套标准,包括算法、数据集以及相关内容,本文我们将其指代为基于数据集,超分中常见的benchmarks为Set5、Set14、BSD100、URBAN100、MANGA109等。
- PSNR:评价模型性能的指标 —— 峰值信噪比,作用在两张图像之间(HR和SR),越大说明模型性能越好,值一般在20-40左右。