【深度思考】为什么评价指标PSNR、SSIM和论文中的不一样?一文搞清超分辨率主流benchmarks测试集Set5等的PSNR、SSIM的计算方式以及python与matlab的imresize差别

本文探讨了在超分辨率领域中,使用Python和Matlab计算PSNR和SSIM时出现差异的原因,包括imresize函数的不同、图像边缘处理和颜色空间转换等问题。通过详细步骤和代码示例,展示了如何在Python中尽量接近Matlab的计算效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)


前言

一些缩写说明:

  • LR:模型输入input,低分辨率图像
  • HR:模型标签label/target,高分辨率图像,也即GT(ground-truth)
  • SR:LR经过模型超分后的结果,即super-resolution result。
  • benchmarks:一套标准,包括算法、数据集以及相关内容,本文我们将其指代为基于数据集,超分中常见的benchmarks为Set5、Set14、BSD100、URBAN100、MANGA109等。
  • PSNR:评价模型性能的指标 —— 峰值信噪比,作用在两张图像之间(HR和SR),越大说明模型性能越好,值一般在20-40左右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值