【图像超分】论文复现:全1×1卷积网络!SCNet的Pytorch源码复现,整合到BasicSR中,获得与论文一致的指标和超分可视化结果,计算参数量和FLOPs,网络结构示意图与源码对应!

请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)

完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!

本文亮点:

  • 跑通SCNet源码,将其整合到BasicSR中,使用BasicSR进行训练和测试,获得与论文一致的指标和超分可视化结果
  • SCNet网络结构解析,示意图与源码对应,注释详细;


前言

论文题目:Fully 1 × 1 Convolutional Network for Lightweight Image Super-Resolution —— 用于轻量级图像超分辨率的全1 × 1卷积网络

论文地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值