视频结构化是指根据视频画面中呈现出的人、车、物、颜色、数字及其他属性特征,建立视频大数据结构化平台。视频被结构化后,存入相应的结构化数据仓库,存储的容量极大降低。
结构化系统可以从海量资料库中查找到某张截图上的嫌疑目标,有助于进行社会治安监控的风险评估和事件预警,并可通过不同位置采集的监控资料,研判目标的行为过程。
作为安防大数据最为重要的数据来源,视频图像实际上是一种非结构化的数据,它不能直接被计算机读取和识别,而在电商、舆情分析等目前大数据取得较好应用效果的领域,它们所产生的都是结构化的数据,能够直接利用计算机来进行数据的分析和挖掘。因此,视频图像能否通过智能分析技术经济而又高效地进行结构化处理,是视频大数据在安防领域落地的关键。
视频结构化,即视频数据的结构化处理,就是通过原始视频进行智能分析,提取出关键信息,并进行文本的语义描述。一段视频里,需要提取的关键信息有哪些?目前来看,主要有三类:第一类是运动目标的识别,也就是画面中运动对象的识别,是人还是车;第二类是运动目标特征的识别,也就是画面中运动的人、车、物有什么特征,如果是人,是男人还是女人,有没有戴眼镜,穿什么颜色的衣服,如果是车,车牌号号码是多少,什么颜色什么车型等等;第三类是运动目标的轨迹分析,也就是画面中人或车是左转了还是右转了或是徘徊了等等。
所谓视频数据的结构化处理,就是通过对原始视频进行智能分析,提取出关键信息,并进行文本的语义描述。一段视频里面,需要提取的关键信息有哪些?目前来看,主要是有三类:第一类是运动目标的识别,也就是画面中运动对象的识别&