一、Redis优化秒杀
1. 压测秒杀业务
- 模拟1000请求,秒杀100张优惠券
- 1000个不同请求,则需要1000个不同token
编写测试方法生成token,存到token.txt 文件中:
@SpringBootTest
public class GenerateTokenTest {
@Resource
private UserServiceImpl userService;
@Resource
private StringRedisTemplate stringRedisTemplate;
@Test
public void test() throws IOException {
List<User> userList = userService.query().list();
FileWriter fw = new FileWriter("e:/token.txt");
BufferedWriter bw = new BufferedWriter(fw);
for (User user : userList) {
String token = UUID.randomUUID().toString(true);
UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
CopyOptions.create()
.setIgnoreNullValue(true)
.setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
stringRedisTemplate.opsForHash().putAll(RedisConstants.LOGIN_USER_KEY + token, userMap);
stringRedisTemplate.expire(RedisConstants.LOGIN_USER_KEY + token, RedisConstants.LOGIN_USER_TTL, TimeUnit.MINUTES);
bw.write(token);
bw.newLine(); // 换行符
bw.flush(); // 清除缓存
}
// 关闭
bw.close();
}
}
生成结果:
使用JMeter测试:
测试结果:
- 由结果可知,平均耗时1675毫秒,耗时较长,吞吐量362.2/s,吞吐量也不高
2. 优化秒杀思路
-
没优化之前的业务流程都是串行执行的,并且还会频繁和数据库交互,所以这就是耗时长,吞吐量不高的原因
-
判断秒杀库存、校验一人一单的业务都是查询操作,耗时较短,可以将该业务放到Redis中执行
-
减库存、创建订单业务会涉及到数据库的写操作,耗时长,可以单独开一个线程处理
-
主线程负责校验,校验成功后将订单id存到阻塞队列,并且将订单id返回给用户,用户可以接着执行其他业务
-
新启的线程异步读取阻塞队列中的信息,判断是否需要创建订单
-
由上面分析可知,需要提前将库存信息和优惠券订单信息缓存到Redis
-
库存信息可以用String类型存储,只要库存大于0就表示有库存;判断完之后还需要在Redis中预减库存;
-
优惠券订单信息需要用set集合存储,key是优惠券订单id,value是用户id,通过判断value是否存在就知道该用户是否下单过,保证了一人一单
-
为了确保判断秒杀库存、校验一人一单的原子性,所以需要使用Lua脚本
3. 改进秒杀业务
需求:
- 新增秒杀优惠券的同时,将优惠券信息保存到Redis中
- 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
- 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
- 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
新增秒杀优惠券的同时,将优惠券信息保存到Redis中:
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
- Lua脚本
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key,2个..表示拼接字符串
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
-- tonumber是将字符串转为数字
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0
改进的代码:
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Resource
private ISeckillVoucherService seckillVoucherService;
@Resource
private RedisIdWorker redisIdWorker;
@Resource
private StringRedisTemplate stringRedisTemplate;
@Resource
private RedissonClient redissonClient;
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
static {
SECKILL_SCRIPT = new DefaultRedisScript<>();
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
// 创建阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
// 用线程池创建独立线程
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
// 项目启动后,就应该开启线程,异步从阻塞队列中获取信息
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
// 2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
}
// 将代理对象作为全局变量,供所有线程使用
private IVoucherOrderService proxy;
private void handleVoucherOrder(VoucherOrder voucherOrder) {
// 1.获取用户,注意,这里是单独的线程,所以不能从主线程的ThreadLocal获取userId
Long userId = voucherOrder.getUserId();
// 2.创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 3.尝试获取锁,这里加锁是兜底方案,可以不用再加锁,因为前面执行过lua脚本校验过一人一单
boolean isLock = redisLock.tryLock();
// 4.判断是否获得锁成功
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
// 注意:不能通过 IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy(); 获取代理对象
// 因为AopContext.currentProxy();底层内部也有个ThreadLocal,但是此时的线程是新开启的线程,所以不能获取到主线程中的代理对象
// 所以需要在主线程中先获取到代理对象,保存到全局变量供所有线程使用
proxy.createVoucherOrder(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
@Override
public Result seckillVoucher(Long voucherId) {
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
// 2.2 为0 ,代表有购买资格,把下单信息保存到阻塞队列
VoucherOrder voucherOrder = new VoucherOrder();
// 2.3.订单id
voucherOrder.setId(orderId);
// 2.4.用户id
voucherOrder.setUserId(userId);
// 2.5.代金券id
voucherOrder.setVoucherId(voucherId);
// 2.6.放入阻塞队列
orderTasks.add(voucherOrder);
// 3.在主线程中获取代理对象
proxy = (IVoucherOrderService) AopContext.currentProxy();
// 4.返回订单id
return Result.ok(orderId);
}
@Transactional
@Override
public void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("用户已经购买过了");
return;
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足");
return;
}
// 7.创建订单
save(voucherOrder);
}
}
测试结果:
- 相比优化前,平均耗时缩短,吞吐量提高
4. 小结
秒杀业务的优化思路是什么?
- 先利用Redis完成库存余量、一人一单判断,完成抢单业务
- 再将下单业务放入阻塞队列,利用独立线程异步下单
基于阻塞队列的异步秒杀存在哪些问题?
- 内存限制问题(如果不对BlockingQueue做大小限制,则会有内存溢出问题)
- 数据安全问题(如果服务宕机,则内存的数据将会丢失)