Redis(十一) - 异步优化秒杀

本文介绍了如何使用Redis优化秒杀业务,通过压测发现原有秒杀系统性能不佳,然后提出了优化思路,包括将库存判断和一人一单校验放到Redis中,使用Lua脚本确保原子性,并采用异步下单处理。优化后的代码通过Redis存储秒杀信息,使用Lua脚本进行库存检查和下单操作,并借助阻塞队列实现异步处理,提高了系统吞吐量和响应速度。
摘要由CSDN通过智能技术生成

一、Redis优化秒杀

1. 压测秒杀业务

  • 模拟1000请求,秒杀100张优惠券
  • 1000个不同请求,则需要1000个不同token

编写测试方法生成token,存到token.txt 文件中:

@SpringBootTest
public class GenerateTokenTest {

    @Resource
    private UserServiceImpl userService;

    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Test
    public void test() throws IOException {
        List<User> userList = userService.query().list();
        FileWriter fw = new FileWriter("e:/token.txt");
        BufferedWriter bw = new BufferedWriter(fw);
        for (User user : userList) {
            String token = UUID.randomUUID().toString(true);
            UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
            Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
                CopyOptions.create()
                    .setIgnoreNullValue(true)
                    .setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
            stringRedisTemplate.opsForHash().putAll(RedisConstants.LOGIN_USER_KEY + token, userMap);
            stringRedisTemplate.expire(RedisConstants.LOGIN_USER_KEY + token, RedisConstants.LOGIN_USER_TTL, TimeUnit.MINUTES);

            bw.write(token);
            bw.newLine(); // 换行符
            bw.flush();  // 清除缓存
        }
        // 关闭
        bw.close();
    }

}

生成结果:
在这里插入图片描述
在这里插入图片描述

使用JMeter测试:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

测试结果:
在这里插入图片描述

  • 由结果可知,平均耗时1675毫秒,耗时较长,吞吐量362.2/s,吞吐量也不高

2. 优化秒杀思路

  • 没优化之前的业务流程都是串行执行的,并且还会频繁和数据库交互,所以这就是耗时长,吞吐量不高的原因
    在这里插入图片描述

  • 判断秒杀库存、校验一人一单的业务都是查询操作,耗时较短,可以将该业务放到Redis中执行

  • 减库存、创建订单业务会涉及到数据库的写操作,耗时长,可以单独开一个线程处理

  • 主线程负责校验,校验成功后将订单id存到阻塞队列,并且将订单id返回给用户,用户可以接着执行其他业务

  • 新启的线程异步读取阻塞队列中的信息,判断是否需要创建订单
    在这里插入图片描述

  • 由上面分析可知,需要提前将库存信息和优惠券订单信息缓存到Redis

  • 库存信息可以用String类型存储,只要库存大于0就表示有库存;判断完之后还需要在Redis中预减库存;

  • 优惠券订单信息需要用set集合存储,key是优惠券订单id,value是用户id,通过判断value是否存在就知道该用户是否下单过,保证了一人一单

  • 为了确保判断秒杀库存、校验一人一单的原子性,所以需要使用Lua脚本
    在这里插入图片描述

3. 改进秒杀业务

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中
  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

新增秒杀优惠券的同时,将优惠券信息保存到Redis中:

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

在这里插入图片描述

  • Lua脚本
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key,2..表示拼接字符串
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
-- tonumber是将字符串转为数字
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

改进的代码:

@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {

    @Resource
    private ISeckillVoucherService seckillVoucherService;

    @Resource
    private RedisIdWorker redisIdWorker;

    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Resource
    private RedissonClient redissonClient;

    private static final DefaultRedisScript<Long> SECKILL_SCRIPT;

    static {
        SECKILL_SCRIPT = new DefaultRedisScript<>();
        SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
        SECKILL_SCRIPT.setResultType(Long.class);
    }

    // 创建阻塞队列
    private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
    // 用线程池创建独立线程
    private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();

    // 项目启动后,就应该开启线程,异步从阻塞队列中获取信息
    @PostConstruct
    private void init() {
        SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
    }

    private class VoucherOrderHandler implements Runnable {

        @Override
        public void run() {
            while (true) {
                try {
                    // 1.获取队列中的订单信息
                    VoucherOrder voucherOrder = orderTasks.take();
                    // 2.创建订单
                    handleVoucherOrder(voucherOrder);
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                }
            }
        }
    }

    // 将代理对象作为全局变量,供所有线程使用
    private IVoucherOrderService proxy;

    private void handleVoucherOrder(VoucherOrder voucherOrder) {
        // 1.获取用户,注意,这里是单独的线程,所以不能从主线程的ThreadLocal获取userId
        Long userId = voucherOrder.getUserId();
        // 2.创建锁对象
        RLock redisLock = redissonClient.getLock("lock:order:" + userId);
        // 3.尝试获取锁,这里加锁是兜底方案,可以不用再加锁,因为前面执行过lua脚本校验过一人一单
        boolean isLock = redisLock.tryLock();
        // 4.判断是否获得锁成功
        if (!isLock) {
            // 获取锁失败,直接返回失败或者重试
            log.error("不允许重复下单!");
            return;
        }
        try {
            // 注意:不能通过 IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy(); 获取代理对象
            // 因为AopContext.currentProxy();底层内部也有个ThreadLocal,但是此时的线程是新开启的线程,所以不能获取到主线程中的代理对象
            // 所以需要在主线程中先获取到代理对象,保存到全局变量供所有线程使用
            proxy.createVoucherOrder(voucherOrder);
        } finally {
            // 释放锁
            redisLock.unlock();
        }
    }

    @Override
    public Result seckillVoucher(Long voucherId) {
        Long userId = UserHolder.getUser().getId();
        long orderId = redisIdWorker.nextId("order");
        // 1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(), userId.toString(), String.valueOf(orderId)
        );
        int r = result.intValue();
        // 2.判断结果是否为0
        if (r != 0) {
            // 2.1.不为0 ,代表没有购买资格
            return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
        }
        // 2.2 为0 ,代表有购买资格,把下单信息保存到阻塞队列
        VoucherOrder voucherOrder = new VoucherOrder();
        // 2.3.订单id
        voucherOrder.setId(orderId);
        // 2.4.用户id
        voucherOrder.setUserId(userId);
        // 2.5.代金券id
        voucherOrder.setVoucherId(voucherId);
        // 2.6.放入阻塞队列
        orderTasks.add(voucherOrder);
        // 3.在主线程中获取代理对象
        proxy = (IVoucherOrderService) AopContext.currentProxy();
        // 4.返回订单id
        return Result.ok(orderId);
    }

    @Transactional
    @Override
    public void createVoucherOrder(VoucherOrder voucherOrder) {

        Long userId = voucherOrder.getUserId();
        // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            log.error("用户已经购买过了");
            return;
        }

        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            log.error("库存不足");
            return;
        }
        // 7.创建订单
        save(voucherOrder);
    }

}

测试结果:
在这里插入图片描述

  • 相比优化前,平均耗时缩短,吞吐量提高

4. 小结

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单

基于阻塞队列的异步秒杀存在哪些问题?

  • 内存限制问题(如果不对BlockingQueue做大小限制,则会有内存溢出问题)
  • 数据安全问题(如果服务宕机,则内存的数据将会丢失)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值