- 博客(249)
- 资源 (8)
- 收藏
- 关注

原创 通过 ModernBERT 实现零样本分类的性能提升
基于 ModernBERT 的新型文本分类模型 GLiClass,在零样本和少样本设置下展现出卓越的性能。GLiClass 结合了复杂模型的准确性与嵌入式方法的效率,通过标签整合、上下文表示学习、表示池化和灵活评分机制,实现输入文本与标签之间的丰富交互。该模型支持多类分类、主题分类、情感分析、事件分类、基于提示的约束分类、自然语言推理以及检索增强生成(RAG)等多种应用场景。实验结果显示,GLiClass 在多个文本分类数据集上表现优异,尤其在零样本设置下展现出强大的泛化能力,为现代 NLP 任务提供了一个
2025-05-07 00:00:00
1254
18

原创 构建最优的 RAG 检索增强生成系统:为你的数据集找到最优解
本文介绍了如何为数据集创建最佳的RAG(检索增强生成)管道。通过系统性地测试不同的参数组合(如分块大小、重叠度、检索数量)和策略(简单RAG、查询重写、重排),结合忠实度、相关性和语义相似度等评估指标,找出最适合特定数据集的RAG配置。实验结果表明,简单RAG策略在效率和效果上表现最佳。文章还提出了未来可进一步探索的方向,如测试更多模型、优化提示和混合搜索策略等。
2025-05-05 00:30:00
760
36

原创 监督学习中自适应模型选择与混合策略:基于强化学习RL的马尔可夫决策过程
无需监督微调的强化学习:通过强化学习(RL)在试错中发展推理能力,无需依赖大型标注数据集。我将RL代理应用于动态学习最佳模型选择策略,无需微调。随着时间的推移,它可以在新数据集或领域中泛化,无需重新训练模型,类似于元学习。例如,代理可能学会在结构化数据中使用XGBoost,在非线性数据中使用DNN,自动适应变化的条件。数据驱动的模型选择与分类:根据数据上下文激活相关的模型组件,使过程高效且有针对性。同样,RL。
2025-04-29 02:00:00
1383
36

原创 如何打造高性能RAG系统:从原型到生产级的16种实战技巧(第1部分)
### 摘要本文深入探讨了如何将检索增强生成(RAG)系统从实验室原型升级为生产级应用的实战技巧。文章首先回顾了RAG系统的基础架构,包括数据分块、嵌入生成、向量数据库存储、查询检索和响应生成等关键步骤。接着,详细介绍了优化数据准备、提升检索精度、优化响应生成、提高系统效率以及持续评估与改进的五大策略。通过16种实用技巧,本文旨在帮助开发者解决RAG系统在实际应用中面临的性能瓶颈、幻觉问题和低效检索等挑战,从而构建出高效、可靠且智能的RAG应用。
2025-04-23 00:00:00
5230
50

原创 AI Agents系列之构建多智能体系统
本文深入探讨了多智能体系统的设计与实现,重点介绍了多种架构模式,包括并行、顺序、循环、路由器、聚合器、网络、监督者和层级架构。每种架构都通过具体示例展示了其在实际应用中的优势与适用场景。文章还详细讨论了智能体之间的通信机制,如图状态共享、消息列表和工具调用,以及如何通过这些机制实现智能体间的高效协作。通过这些架构和通信方式,多智能体系统能够有效解决复杂任务,提升系统的可扩展性和适应性。
2025-04-19 00:00:00
1640
34

原创 详解如何一步步拿下企业年报问答RAG挑战赛冠军
本文揭秘如何斩获企业级RAG挑战赛双料冠军的完整技术方案。面对100份千页PDF年报的极限解析任务,他创新性地组合了GPU加速解析、多级检索路由和LLM重排序等技术:先用改造后的Docling解析器40分钟完成文本提取,再通过"小块定位+整页返回"的检索策略平衡精度与上下文,最后用结构化提示词工程让GPT-4o-mini在2分钟内完成100道题的高精度作答。文章幽默呈现了与PDF格式的搏斗历程,揭示了表格序列化实验的反转结局,并强调冠军方案的核心在于对业务场景的深度理解
2025-04-15 00:00:00
7454
58

原创 详解如何复现DeepSeek R1:从零开始利用Python构建
本文详细介绍了从零开始构建 DeepSeek R1 的过程,涵盖了从基础模型选择、训练数据准备到多阶段训练的完整流程。首先,通过强化学习(RL)和 GRPO 算法训练出 R1 Zero,解决了基础模型的推理能力问题。接着,通过监督式微调(SFT)和冷启动数据,进一步优化模型的推理风格和语言一致性。最后,通过推理导向的强化学习、拒绝采样以及知识蒸馏等技术,不断提升模型的推理质量和实用性,最终得到高效且推理能力强的 DeepSeek R1 模型。整个过程不仅注重技术实现,还通过详细示例和代码,让读者能够清晰地理
2025-04-11 00:00:00
2944
57

原创 详解如何从零用 Python复现类似 GPT-4o 的多模态模型
在这篇博客中,我们从零开始构建了一个多模态模型,能够处理文本、图像、视频和音频,并根据文本提示生成图像。我们首先实现了 BPE 分词器,将文本分解为子词标记。接着,我们构建了一个基于 Transformer 的语言模型,能够生成文本。然后,我们将模型扩展为多模态,通过 ResNet 提取图像特征,并将这些特征与文本结合,使模型能够回答关于图像的问题。我们还展示了如何通过文本提示生成图像特征向量,并找到最接近的已知图像。整个过程不仅展示了多模态模型的强大能力,还揭示了其在实际应用中的潜力。
2025-04-10 00:00:00
14245
104

原创 如何使用 FastAPI 构建 MCP 服务器
哎呀,各位算法界的小伙伴们!今天咱们要聊聊一个超酷的话题——MCP 协议!你可能已经听说了,Anthropic 推出了这个新玩意儿,目的是让 AI 代理和你的应用程序之间的对话变得更顺畅、更清晰。不过别担心,为你的 Python 应用程序搭建一个这样的服务器并不复杂,甚至可以说简单到让你怀疑人生!想象一下,AI 就像你的私人助理,而 MCP 就是它和你家大门之间的钥匙。让 AI 去操心那些繁琐的逻辑吧,咱就负责躺平享受成果。不管你是想连数据库还是接 API,MCP 都能帮你搞定。
2025-03-31 11:20:36
2488
35

原创 图解LLM智能体(LLM Agents):构建与运作机制的全面解析
本文深入探讨了大型语言模型(LLM)智能体的构建与运作机制,涵盖其核心组件和多智能体框架。LLM智能体通过外部工具、记忆系统和规划能力弥补了传统LLM的不足,能够执行复杂任务并展示自主行为。文章详细介绍了记忆模块(短期与长期记忆)、工具使用(如Toolformer和MCP协议)以及规划与推理技术(如ReAct和Reflexion)。此外,多智能体系统的协作框架被提出,用于解决单一智能体在工具选择、上下文复杂性和任务专业化上的局限性。生成式智能体(Generative Agents)模拟人类行为的研究展示了多
2025-03-18 13:35:10
2062
5

原创 徒手打造个人AI Agent:基于DeepSeek-R1+websearch从零构建类Manus深度探索智能体AI-Research
该系统能够在预定义的主题上进行深入研究。研究计划:这意味着创建一个研究报告大纲,这将成为系统的最终输出。将上述内容拆分为可管理的步骤。对报告的各个部分进行深入研究。针对推理所需的数据,进行全面的分析,并利用网络搜索工具支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并生成最终的研究报告。今天,我们将实现上述所有步骤,而不使用任何LLM编排框架。首先,我们需要定义整个系统的状态,该状态将在代理运行过程中不断演变,并被系统的不同部分选择性地使用。
2025-03-16 00:15:00
1891
16

原创 【开源+代码解读】Search-R1:基于强化学习的检索增强大语言模型框架3小时即可打造个人AI-search
强化学习驱动检索:首次将RL应用于LLM与搜索引擎的多轮交互,突破传统监督学习限制。轻量化奖励设计:仅用结果奖励即可引导模型学习复杂检索策略。结构化生成框架:通过标记控制生成流程,兼容不同RL算法。
2025-03-13 13:57:02
3031
17

原创 从理解强化学习及其在 LLM 中的作用开始手把手教你构建DeepSeek-R1推理模型
本文深入探讨了强化学习(RL)在大型语言模型(LLM)训练中的应用,特别是通过人类反馈强化学习(RLHF)技术对齐人类偏好。文章重点介绍了组相对策略优化(GRPO)这一创新算法,其通过生成多个响应组、组内归一化优势计算和KL散度约束,显著提升了训练效率和稳定性。此外,本文详细解析了DeepSeek R1模型的四阶段训练流程,展示了其在数学和编程任务中的卓越表现。最后,文章还介绍了如何在TRL库中实现GRPO,并提供了配置参数、奖励函数设计和训练监控指标等实用建议
2025-03-05 01:15:00
1925
11
原创 深入理解深度确定性策略梯度DDPG:基于python从零实现
深度确定性策略梯度(DDPG)是一种离线策略的演员-评论家算法,专门为具有连续动作空间的环境设计。它结合了深度 Q 网络(DQN)中的思想,例如回放缓存和目标网络,并将其应用于演员-评论家框架,适应确定性策略的策略梯度。这使得它成为处理机器人控制和模拟物理环境等任务的强大工具,这些任务中的动作是实数值。演员(Actor)μs;θμ\mu(s;μs;θμ:一个策略网络,它接收状态sss并输出一个特定的确定性动作aμsa = \mu(s)aμs,而不是动作的概率分。
2025-05-08 08:20:57
336
原创 异步优势演员-评论家算法A3C算法详解:python从零实现
我们将为网格世界实现 A3C。请注意,A3C 的并行性好处在这样简单、快速的环境中不太明显,与复杂任务(如 Atari)相比,这个示例的重点是说明异步结构。环境描述:(与之前相同)一个网络同时输出动作概率(对数几率)和状态价值。在 A3C/A2C 中,共享初始层是很常见的。"""组合的演员-评论家网络,用于 A3C"""# 共享层# 演员头部(输出动作对数几率)# 评论家头部(输出状态价值)"""前向传播,返回动作分布和状态价值。
2025-05-07 05:15:00
521
3
原创 用 GRPO 魔法点亮Text2SQL 的推理之路:让模型“思考”得更像人类
本文探讨了如何通过 GRPO(引导式奖励策略优化)技术,将一个标准的 7B 参数语言模型(Qwen2.5-Coder-7B-Instruct)细调为能够进行结构化推理的文本到 SQL 模型。通过设计多部分奖励函数,模型在推理质量和 SQL 准确性方面得到了显著提升。实验结果表明,经过 300 个样本和 250 步训练后,模型在 SQL 正确性、推理质量、格式遵循和教育价值等方面表现出色,88% 的输出得分在 4.0 或更高,展现出一致性和可解释性。
2025-05-06 13:05:00
972
11
原创 优势演员-评论家A2C详解:python从零实现
本文详细介绍了优势演员-评论家(A2C)算法,这是一种结合了策略梯度和价值函数估计的强化学习方法。A2C 通过使用评论家估计的状态价值来计算优势函数,从而降低策略更新的方差,实现更稳定的学习过程。文章首先解释了 A2C 的基本原理和数学基础,包括演员和评论家的更新方式,以及如何通过广义优势估计(GAE)来计算优势。接着,通过一个自定义的网格世界环境,展示了 A2C 的实现和训练过程,并分析了学习曲线。实验结果表明,A2C 能够有效地学习到最优策略,同时平衡了奖励最大化和路径效率。
2025-05-06 12:11:44
508
1
原创 使用 Streamlit 构建一个基于 RAG 的 SQL 助手
本文介绍了如何构建一个基于检索增强(RAG)系统的 SQL 助手,使用户能够通过自然语言查询多个数据库。该系统利用大型语言模型(LLM)和 LangChain、LangGraph 等工具,结合 Streamlit 构建用户友好的聊天界面,支持连接 SQLite、BigQuery 和 Redshift 数据库。文章详细阐述了系统的工作原理、技术架构以及实现步骤,并提供了完整的代码仓库。同时,作者也指出了当前系统的局限性,如缺乏对话记忆和错误处理机制,并提出了改进方向。
2025-05-05 00:15:00
252
2
原创 从零开始理解FlashAttention:注意力机制、GPU架构和CUDA编程模型图解
注意力机制是由Vaswani等人在2017年的论文《Attention is All You Need》中提出的Transformer架构的核心组件。从高层次来看,注意力机制允许模型在处理某个token时,动态地关注输入序列的不同部分,同时忽略其他部分。Token是输入序列中的单个元素,可以是一个单词、图像中的一个像素块,甚至是图中的一个节点。对于输入序列中的每个token,都会计算其与其他所有token的注意力分数。
2025-05-04 01:00:00
1037
4
原创 REINFORCE蒙特卡罗策略梯度算法详解:python从零实现
REINFORCE 是一种基础的策略梯度算法,通过蒙特卡洛方法直接优化策略,适用于离散和连续动作空间。它通过完整轨迹的折扣回报更新策略参数,但存在高方差问题,导致学习不稳定和收敛速度慢。为解决这些问题,可以采用基线减法、回报标准化或增加批次大小等方法。REINFORCE 虽然简单,但效率较低,通常作为理解更先进策略梯度和 Actor-Critic 方法的起点。这些改进方法通过引入价值函数估计或重要性采样等技术,有效降低了方差,提高了样本效率,从而在复杂任务中表现更优。
2025-05-04 00:00:00
1459
1
原创 强化学习中的策略评估与改进:从理论到实践(二)
本文深入探讨了强化学习中的策略评估与改进方法,详细介绍了如何通过贝尔曼方程求解最优策略。文章首先通过一个简单的环境示例,展示了如何通过解线性方程组来计算状态价值函数(V 函数)。随后,文章详细介绍了策略评估的迭代方法,包括其算法逻辑和收敛性证明。通过迷宫示例,文章进一步解释了如何利用 V 函数进行策略改进,并引入了策略改进定理。文章还介绍了策略迭代和价值迭代两种经典算法,并探讨了异步价值迭代和广义策略迭代(GPI)的概念。最后,文章总结了这些方法在实际应用中的重要性和局限性,并强调了在复杂环境中进行策略优化
2025-05-03 12:46:49
1172
3
原创 强化学习简介与核心概念:从理论到实践(一)
本文介绍了强化学习的基本概念与核心框架。文章解释了智能体如何通过与环境互动,采用试错方法学习最优策略,并探讨了奖励机制、累积回报、策略与价值函数(V函数和Q函数)等关键概念。同时,文章详细说明了贝尔曼方程及其在计算状态和动作价值中的作用,并提出最优策略与贝尔曼最优方程的关系。最后,文章讨论了强化学习在实际应用中的挑战,如高计算成本促使使用近似方法。
2025-05-03 01:00:00
1627
6
原创 Expected SARSA算法详解:python 从零实现
Expected SARSA是SARSA算法的一个优雅变体,它就像是SARSA的"数学家"版本。如果说SARSA是一个谨慎的决策者,那么Expected SARSA就是一个精于计算的统计学家。它不再满足于只看下一个动作,而是会计算所有可能动作的期望值。这就像是在说:“让我算算所有可能的结果,然后做出最理性的决定。Expected SARSA算法就像是强化学习世界中的"数学家"。它通过计算期望值来做出决策,虽然计算量较大,但往往能得到更稳定的结果。
2025-05-03 00:00:00
1919
3
原创 如何让模型聪明地选择特征:一种“蒸馏及选择”的方法
本文介绍了一种创新的“蒸馏及选择”(Distill-to-Select)方法,旨在通过模型蒸馏技术实现高效的特征选择和模型简化。该方法首先训练一个复杂的教师模型(如LightGBM),然后将其知识提炼到一个稀疏的学生模型(如逻辑回归)中,通过复合损失函数(结合预测损失、蒸馏损失和稀疏性损失)优化学生模型。实验表明,提炼后的学生模型不仅性能与教师模型相当,还具有更高的可解释性和稀疏性,能够自动筛选出核心特征。这种方法适用于多种模型架构,具有广泛的适用性和灵活性,为复杂模型的简化和特征选择提供了一种全新的解决方
2025-05-02 13:49:05
1183
5
原创 学习与规划的融合Dyna-Q:python从零实现
本文介绍了 Dyna-Q 算法,一种结合直接强化学习和基于模型规划的强化学习方法。Dyna-Q 通过学习环境的动态模型,并利用该模型生成模拟经验进行规划,从而提高样本效率。它特别适用于样本稀缺或交互成本高的场景。文章详细解释了 Dyna-Q 的工作原理,包括直接强化学习、模型学习和规划步骤,并通过一个 10x10 的网格世界任务展示了其训练过程和学习效果。实验结果表明,Dyna-Q 能够有效学习到最优策略,同时减少对真实环境交互的依赖
2025-05-02 00:00:00
1135
2
原创 近端策略优化PPO详解:python从零实现
介绍了近端策略优化(PPO)算法,这是一种广泛应用于强化学习任务的先进策略梯度算法。PPO通过引入截断代理目标函数,结合演员-评论家结构和广义优势估计(GAE),在保持策略更新稳定性的同时提高了样本效率。文章通过自定义网格世界环境的实验,展示了PPO在快速收敛到最优策略方面的高效性,并分析了其学习曲线,包括奖励、回合长度、策略损失、价值损失和策略熵等关键指标。此外,还探讨了PPO在训练大型语言模型(LLM)时的应用,尤其是在基于人类反馈的强化学习(RLHF)中的作用
2025-05-01 21:29:39
1415
41
原创 SARSA 算法详解:python从零实现
SARSA(State-Action-Reward-State-Action,状态-动作-奖励-状态-动作)是一种用于学习马尔可夫决策过程策略的强化学习算法。它是一种无模型、基于价值的**在线策略**学习算法。和离线策略的 Q-learning 不一样,SARSA 学习的是正在执行的策略的价值
2025-05-01 00:15:00
1631
3
原创 Qwen3 模型架构和能力概览
每个框架都实现了对 Qwen3 的关键能力的支持,包括思考模式和工具调用。这使得模型在保持推理效率的同时,能够拥有更大的总参数量。这些模型既能处理简短的互动,也能处理长篇内容,使其在从聊天机器人到文档分析的各种应用场景中都非常灵活。Qwen3 在语言模型架构方面取得了显著进步,涵盖了密集模型和混合专家(MoE)变体。这种多语言能力是集成在核心模型架构中的,而不是附加功能,因此在非英语任务中特别有效。思考模式显著提升了复杂推理任务的表现,而非思考模式则为简单查询提供了更高效的响应。
2025-04-30 09:22:54
1021
2
原创 机器学习算法速查表:数据科学家的宝藏秘籍
机器学习的世界里充满了各种各样的算法,每个算法都有自己的优势、劣势和应用场景。作为一名数据科学家,知道何时以及如何使用这些算法,是解决实际问题的关键。这份速查表将带你快速了解最流行的机器学习算法,解释清晰,例子实用,还加了一些有趣的表情符号,让学习过程更加轻松愉快!🎉。
2025-04-30 00:00:00
1586
1
原创 机器学习分类模型性能评估:应对类别不平衡的策略与指标
在机器学习中,构建分类模型时,我们常常面临数据类别不平衡的问题,例如在罕见疾病检测任务中,患病样本极少。这种情况下,传统的准确率指标可能误导模型性能评估,因为简单地预测多数类就能获得高准确率,但这忽略了少数类的检测。本文通过混淆矩阵引出多种性能评估指标,包括召回率、精确率和F1分数,详细探讨了它们在处理类别不平衡问题时的优势与适用场景,帮助读者理解如何选择合适的指标来准确评估分类模型的性能,从而更好地应对实际应用中的挑战。
2025-04-29 00:00:00
1083
3
原创 人工智能与机器学习:Python从零实现K-Means 算法
我的博客主页: https://lizheng.blog.csdn.netK-Means 可是我超喜欢的机器学习算法呢,因为它能帮我们发现数据里那些隐藏起来的模式呢。要是用得好的话,它能把你数据里的分组或者聚类情况展示得明明白白的,那可都是因为它背后那些严谨的数学原理呢。这在现实生活中可有不少厉害的应用呢。比如说呀,要是你负责分析一个电商网站的点击流数据呢,你就可以用 K-Means 把顾客按照他们点击的内容、加入购物车的东西,还有购买的东西来分成不同的群组呢。这就能帮你搞出一套个性化策略呢,根据顾客所在
2025-04-28 22:00:00
670
8
原创 开源AI代理框架大比拼:技术细节与开发者体验全解析
本文对当前热门的开源代理框架进行了全面对比,涵盖了从模型不可知性、数据传递方式到多模态支持、多代理协作等多个关键维度。这些框架包括 Agno、LangGraph、SmolAgents、Mastra、Pydantic AI、Atomic Agents、Autogen、CrewAI 和 Dify。通过详细分析每个框架的技术特点、开发者体验以及适用场景,本文帮助读者快速了解各框架的优势与局限,为选择合适的框架提供参考依据。无论是初学者还是资深开发者,都能从中找到适合自己的工具
2025-04-28 00:30:00
937
11
原创 如何解决无训练数据问题:一种更为智能化的解决方案
手动标注数据真的很费时间,而且买数据集又贵得要命,还不一定能完全符合你的需求。但这里有个令人兴奋的好消息,为啥不用 AI 来解决这个问题呢?别再依赖传统方法了,你可以用像 LLM(大型语言模型)和图像生成器这样的 AI 工具,为你的特定目标创建合成训练数据。如今有那么多开源和商业的 AI 模型可供选择,你可以根据自己的需求随意搭配,无论是想控制预算、提高效率,还是追求高质量的结果,都能轻松搞定。这对研究和商业来说,简直就是一场变革!
2025-04-27 20:00:00
1044
12
原创 基于物理信息的神经网络在异常检测Anomaly Detection中的应用:实践指南
物理信息神经网络(PINNs)代表了一种令人兴奋的新建模范式,这种范式正在各行各业迅速崭露头角。PINNs 最有前景的应用之一是复杂物理系统中的异常检测Anomaly Detection。这一应用尤其值得关注,因为它解决了传统机器学习方法在实践中一直难以克服的几个关键痛点。在这篇博客中,让我们通过回答实践者在采用基于 PINN 的方法进行异常检测Anomaly Detection时最常遇到的一些问题,深入探讨这个热门话题。
2025-04-27 13:11:54
1114
42
原创 理解Q学习Q-Learning完整指南:Python从零实现
Q学习是一种强化学习算法,它使代理能够通过试错发现哪些动作能产生最高奖励,从而学习在任何给定情况下采取的最优动作。它是一种无模型、基于价值的学习算法,这意味着它不需要环境模型就能从中学习。相反,它从在不同状态下采取动作后获得的奖励中学习。“Q"在Q学习中代表"质量”(quality) - 本质上表示给定动作在获得未来奖励方面的有用程度。
2025-04-26 02:30:00
446
31
原创 人工智能与机器学习:Python从零实现性回归模型
带你从零实现一个线性回归模型,不依赖任何机器学习库。从数据预处理、归一化,到实现 Sigmoid 函数、计算损失函数,再到用梯度下降找到最优权重,每一步都详细讲解。最后,咱们还用加州房价数据集测试了模型,准确率达到了80%,和 sklearn 的模型不相上下。
2025-04-26 00:00:00
1119
56
原创 超级详细的强化学习入门指南(python从零实现包教包会版)
强化学习(RL)是机器学习中一个令人着迷的领域,专注于训练智能代理在环境中做出最优的决策序列,以实现特定的目标。与监督学习(我们有标记数据)或无监督学习(我们在数据中寻找模式)不同,RL代理通过试错来学习。代理的(行, 列)元组。4个离散动作:0(上)、1(下)、2(左)、3(右)。确定性的。从(r, c)采取动作’上’会到达(r-1, c),除非r=0(墙)。+10:到达目标(9, 9)。-1:撞到墙(移出网格)。-0.1:采取任何其他步骤。到达目标或超过步数限制。
2025-04-25 21:55:26
1235
14
原创 人工智能与机器学习:Python从零实现逻辑回归模型
这篇文章带你从零实现一个逻辑回归模型,不依赖任何机器学习库。从数据预处理、归一化,到实现 Sigmoid 函数、计算损失函数,再到用梯度下降找到最优权重,每一步都详细讲解。最后,咱们还用心脏病发作数据集测试了模型,准确率达到了80%,和 sklearn 的模型不相上下。
2025-04-25 18:14:44
1275
10
原创 人工智能与机器学习:二元分类决策树构建指南
本文围绕构建用于二元分类的决策树展开。先介绍决策树的概念、结构及元素,以邮件欺诈检测为例说明其工作原理。接着讲解构建决策树的基尼不纯度指标,包括分类和连续变量的计算方法。最后给出Python实现,定义 DIYClassificationDecisionTree 类,包含超参数设置、数据划分、拟合及构建树等方法,助读者掌握决策树构建技巧。
2025-04-24 20:30:00
1067
7
基于langchain/llamaindex的20多种RAG技术实现
2025-04-22
python源代码详解检索增强生成(RAG)
2025-04-14
大型语言模型、预训练模型与嵌入模型的选型指南及应用场景解析
2025-04-01
基于Label Studio的文档标注方法及应用场景
2025-03-25
图数据库基准测试:TigerGraph与其他图数据库的性能对比及优势解析
2025-03-25
RAG学习RL测试数据集
2025-03-25
企业AIGC商业落地应用解析:技术进步引领企业服务创新与优化
2025-03-24
RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等
2025-03-20
招标投文本NER/REL数据集-中标单位与金额解析及其关联信息整理
2025-03-17
面向统一端到端模型的下一代光学字符识别理论与GOT-OCR-2.0模型解析
2025-03-13
基于Label Studio的文本标注工具及其实现自然语言处理任务的操作手册
2025-03-12
使用DeepSeek进行高效学习、工作与旅行规划的经验与技巧详解
2025-03-11
从零构建RAG-基于提示连接检索增强生成与LLM的技术解析及应用场景
2025-03-11
区块链应用与测试:涵盖用户注册页面测试、文档分类及应用部署
2025-03-11
推理模型构建:四种主要方法和技术进展综述
2025-03-10
智能投标领域的星火投标平台-利用大模型技术提高编标效率与标书质量的应用指南
2025-03-10
智慧政策系统的多功能综合应用及其实现方案-聚焦文件解析、知识图谱和智能问答
2025-03-03
DeepSeek高效使用技巧:职场、学术、自媒体的内容生成与问题求解利器
2025-03-01
语音对话大模型及其基准测试的全面综述与最新进展
2025-03-01
自适应确定DBSCAN算法参数的算法研究_李文杰.pdf
2020-04-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人