自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI人工智能的学习之路

归零,更新 重启,向上! 归零,不沉溺过去 更新,不止步于现状 重启,不受限于旧习惯 向上,不断攀升

  • 博客(249)
  • 资源 (8)
  • 收藏
  • 关注

原创 通过 ModernBERT 实现零样本分类的性能提升

基于 ModernBERT 的新型文本分类模型 GLiClass,在零样本和少样本设置下展现出卓越的性能。GLiClass 结合了复杂模型的准确性与嵌入式方法的效率,通过标签整合、上下文表示学习、表示池化和灵活评分机制,实现输入文本与标签之间的丰富交互。该模型支持多类分类、主题分类、情感分析、事件分类、基于提示的约束分类、自然语言推理以及检索增强生成(RAG)等多种应用场景。实验结果显示,GLiClass 在多个文本分类数据集上表现优异,尤其在零样本设置下展现出强大的泛化能力,为现代 NLP 任务提供了一个

2025-05-07 00:00:00 1254 18

原创 构建最优的 RAG 检索增强生成系统:为你的数据集找到最优解

本文介绍了如何为数据集创建最佳的RAG(检索增强生成)管道。通过系统性地测试不同的参数组合(如分块大小、重叠度、检索数量)和策略(简单RAG、查询重写、重排),结合忠实度、相关性和语义相似度等评估指标,找出最适合特定数据集的RAG配置。实验结果表明,简单RAG策略在效率和效果上表现最佳。文章还提出了未来可进一步探索的方向,如测试更多模型、优化提示和混合搜索策略等。

2025-05-05 00:30:00 760 36

原创 监督学习中自适应模型选择与混合策略:基于强化学习RL的马尔可夫决策过程

无需监督微调的强化学习:通过强化学习(RL)在试错中发展推理能力,无需依赖大型标注数据集。我将RL代理应用于动态学习最佳模型选择策略,无需微调。随着时间的推移,它可以在新数据集或领域中泛化,无需重新训练模型,类似于元学习。例如,代理可能学会在结构化数据中使用XGBoost,在非线性数据中使用DNN,自动适应变化的条件。数据驱动的模型选择与分类:根据数据上下文激活相关的模型组件,使过程高效且有针对性。同样,RL。

2025-04-29 02:00:00 1383 36

原创 如何打造高性能RAG系统:从原型到生产级的16种实战技巧(第1部分)

### 摘要本文深入探讨了如何将检索增强生成(RAG)系统从实验室原型升级为生产级应用的实战技巧。文章首先回顾了RAG系统的基础架构,包括数据分块、嵌入生成、向量数据库存储、查询检索和响应生成等关键步骤。接着,详细介绍了优化数据准备、提升检索精度、优化响应生成、提高系统效率以及持续评估与改进的五大策略。通过16种实用技巧,本文旨在帮助开发者解决RAG系统在实际应用中面临的性能瓶颈、幻觉问题和低效检索等挑战,从而构建出高效、可靠且智能的RAG应用。

2025-04-23 00:00:00 5230 50

原创 AI Agents系列之构建多智能体系统

本文深入探讨了多智能体系统的设计与实现,重点介绍了多种架构模式,包括并行、顺序、循环、路由器、聚合器、网络、监督者和层级架构。每种架构都通过具体示例展示了其在实际应用中的优势与适用场景。文章还详细讨论了智能体之间的通信机制,如图状态共享、消息列表和工具调用,以及如何通过这些机制实现智能体间的高效协作。通过这些架构和通信方式,多智能体系统能够有效解决复杂任务,提升系统的可扩展性和适应性。

2025-04-19 00:00:00 1640 34

原创 详解如何一步步拿下企业年报问答RAG挑战赛冠军

本文揭秘如何斩获企业级RAG挑战赛双料冠军的完整技术方案。面对100份千页PDF年报的极限解析任务,他创新性地组合了GPU加速解析、多级检索路由和LLM重排序等技术:先用改造后的Docling解析器40分钟完成文本提取,再通过"小块定位+整页返回"的检索策略平衡精度与上下文,最后用结构化提示词工程让GPT-4o-mini在2分钟内完成100道题的高精度作答。文章幽默呈现了与PDF格式的搏斗历程,揭示了表格序列化实验的反转结局,并强调冠军方案的核心在于对业务场景的深度理解

2025-04-15 00:00:00 7454 58

原创 详解如何复现DeepSeek R1:从零开始利用Python构建

本文详细介绍了从零开始构建 DeepSeek R1 的过程,涵盖了从基础模型选择、训练数据准备到多阶段训练的完整流程。首先,通过强化学习(RL)和 GRPO 算法训练出 R1 Zero,解决了基础模型的推理能力问题。接着,通过监督式微调(SFT)和冷启动数据,进一步优化模型的推理风格和语言一致性。最后,通过推理导向的强化学习、拒绝采样以及知识蒸馏等技术,不断提升模型的推理质量和实用性,最终得到高效且推理能力强的 DeepSeek R1 模型。整个过程不仅注重技术实现,还通过详细示例和代码,让读者能够清晰地理

2025-04-11 00:00:00 2944 57

原创 详解如何从零用 Python复现类似 GPT-4o 的多模态模型

在这篇博客中,我们从零开始构建了一个多模态模型,能够处理文本、图像、视频和音频,并根据文本提示生成图像。我们首先实现了 BPE 分词器,将文本分解为子词标记。接着,我们构建了一个基于 Transformer 的语言模型,能够生成文本。然后,我们将模型扩展为多模态,通过 ResNet 提取图像特征,并将这些特征与文本结合,使模型能够回答关于图像的问题。我们还展示了如何通过文本提示生成图像特征向量,并找到最接近的已知图像。整个过程不仅展示了多模态模型的强大能力,还揭示了其在实际应用中的潜力。

2025-04-10 00:00:00 14245 104

原创 如何使用 FastAPI 构建 MCP 服务器

哎呀,各位算法界的小伙伴们!今天咱们要聊聊一个超酷的话题——MCP 协议!你可能已经听说了,Anthropic 推出了这个新玩意儿,目的是让 AI 代理和你的应用程序之间的对话变得更顺畅、更清晰。不过别担心,为你的 Python 应用程序搭建一个这样的服务器并不复杂,甚至可以说简单到让你怀疑人生!想象一下,AI 就像你的私人助理,而 MCP 就是它和你家大门之间的钥匙。让 AI 去操心那些繁琐的逻辑吧,咱就负责躺平享受成果。不管你是想连数据库还是接 API,MCP 都能帮你搞定。

2025-03-31 11:20:36 2488 35

原创 使用Python从零开始构建千万级参数的大型语言模型(LLM)

徒手pytho撸出Transformer架构并一步步训练处一个LLM大模型

2025-03-22 00:15:00 1324 9

原创 图解LLM智能体(LLM Agents):构建与运作机制的全面解析

本文深入探讨了大型语言模型(LLM)智能体的构建与运作机制,涵盖其核心组件和多智能体框架。LLM智能体通过外部工具、记忆系统和规划能力弥补了传统LLM的不足,能够执行复杂任务并展示自主行为。文章详细介绍了记忆模块(短期与长期记忆)、工具使用(如Toolformer和MCP协议)以及规划与推理技术(如ReAct和Reflexion)。此外,多智能体系统的协作框架被提出,用于解决单一智能体在工具选择、上下文复杂性和任务专业化上的局限性。生成式智能体(Generative Agents)模拟人类行为的研究展示了多

2025-03-18 13:35:10 2062 5

原创 徒手打造个人AI Agent:基于DeepSeek-R1+websearch从零构建类Manus深度探索智能体AI-Research

该系统能够在预定义的主题上进行深入研究。研究计划:这意味着创建一个研究报告大纲,这将成为系统的最终输出。将上述内容拆分为可管理的步骤。对报告的各个部分进行深入研究。针对推理所需的数据,进行全面的分析,并利用网络搜索工具支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并生成最终的研究报告。今天,我们将实现上述所有步骤,而不使用任何LLM编排框架。首先,我们需要定义整个系统的状态,该状态将在代理运行过程中不断演变,并被系统的不同部分选择性地使用。

2025-03-16 00:15:00 1891 16

原创 【开源+代码解读】Search-R1:基于强化学习的检索增强大语言模型框架3小时即可打造个人AI-search

强化学习驱动检索:首次将RL应用于LLM与搜索引擎的多轮交互,突破传统监督学习限制。轻量化奖励设计:仅用结果奖励即可引导模型学习复杂检索策略。结构化生成框架:通过标记控制生成流程,兼容不同RL算法。

2025-03-13 13:57:02 3031 17

原创 从理解强化学习及其在 LLM 中的作用开始手把手教你构建DeepSeek-R1推理模型

本文深入探讨了强化学习(RL)在大型语言模型(LLM)训练中的应用,特别是通过人类反馈强化学习(RLHF)技术对齐人类偏好。文章重点介绍了组相对策略优化(GRPO)这一创新算法,其通过生成多个响应组、组内归一化优势计算和KL散度约束,显著提升了训练效率和稳定性。此外,本文详细解析了DeepSeek R1模型的四阶段训练流程,展示了其在数学和编程任务中的卓越表现。最后,文章还介绍了如何在TRL库中实现GRPO,并提供了配置参数、奖励函数设计和训练监控指标等实用建议

2025-03-05 01:15:00 1925 11

原创 深入理解深度确定性策略梯度DDPG:基于python从零实现

深度确定性策略梯度(DDPG)是一种离线策略的演员-评论家算法,专门为具有连续动作空间的环境设计。它结合了深度 Q 网络(DQN)中的思想,例如回放缓存和目标网络,并将其应用于演员-评论家框架,适应确定性策略的策略梯度。这使得它成为处理机器人控制和模拟物理环境等任务的强大工具,这些任务中的动作是实数值。演员(Actor)μs;θμ\mu(s;μs;θμ:一个策略网络,它接收状态sss并输出一个特定的确定性动作aμsa = \mu(s)aμs,而不是动作的概率分。

2025-05-08 08:20:57 336

原创 异步优势演员-评论家算法A3C算法详解:python从零实现

我们将为网格世界实现 A3C。请注意,A3C 的并行性好处在这样简单、快速的环境中不太明显,与复杂任务(如 Atari)相比,这个示例的重点是说明异步结构。环境描述:(与之前相同)一个网络同时输出动作概率(对数几率)和状态价值。在 A3C/A2C 中,共享初始层是很常见的。"""组合的演员-评论家网络,用于 A3C"""# 共享层# 演员头部(输出动作对数几率)# 评论家头部(输出状态价值)"""前向传播,返回动作分布和状态价值。

2025-05-07 05:15:00 521 3

原创 用 GRPO 魔法点亮Text2SQL 的推理之路:让模型“思考”得更像人类

本文探讨了如何通过 GRPO(引导式奖励策略优化)技术,将一个标准的 7B 参数语言模型(Qwen2.5-Coder-7B-Instruct)细调为能够进行结构化推理的文本到 SQL 模型。通过设计多部分奖励函数,模型在推理质量和 SQL 准确性方面得到了显著提升。实验结果表明,经过 300 个样本和 250 步训练后,模型在 SQL 正确性、推理质量、格式遵循和教育价值等方面表现出色,88% 的输出得分在 4.0 或更高,展现出一致性和可解释性。

2025-05-06 13:05:00 972 11

原创 优势演员-评论家A2C详解:python从零实现

本文详细介绍了优势演员-评论家(A2C)算法,这是一种结合了策略梯度和价值函数估计的强化学习方法。A2C 通过使用评论家估计的状态价值来计算优势函数,从而降低策略更新的方差,实现更稳定的学习过程。文章首先解释了 A2C 的基本原理和数学基础,包括演员和评论家的更新方式,以及如何通过广义优势估计(GAE)来计算优势。接着,通过一个自定义的网格世界环境,展示了 A2C 的实现和训练过程,并分析了学习曲线。实验结果表明,A2C 能够有效地学习到最优策略,同时平衡了奖励最大化和路径效率。

2025-05-06 12:11:44 508 1

原创 使用 Streamlit 构建一个基于 RAG 的 SQL 助手

本文介绍了如何构建一个基于检索增强(RAG)系统的 SQL 助手,使用户能够通过自然语言查询多个数据库。该系统利用大型语言模型(LLM)和 LangChain、LangGraph 等工具,结合 Streamlit 构建用户友好的聊天界面,支持连接 SQLite、BigQuery 和 Redshift 数据库。文章详细阐述了系统的工作原理、技术架构以及实现步骤,并提供了完整的代码仓库。同时,作者也指出了当前系统的局限性,如缺乏对话记忆和错误处理机制,并提出了改进方向。

2025-05-05 00:15:00 252 2

原创 从零开始理解FlashAttention:注意力机制、GPU架构和CUDA编程模型图解

注意力机制是由Vaswani等人在2017年的论文《Attention is All You Need》中提出的Transformer架构的核心组件。从高层次来看,注意力机制允许模型在处理某个token时,动态地关注输入序列的不同部分,同时忽略其他部分。Token是输入序列中的单个元素,可以是一个单词、图像中的一个像素块,甚至是图中的一个节点。对于输入序列中的每个token,都会计算其与其他所有token的注意力分数。

2025-05-04 01:00:00 1037 4

原创 REINFORCE蒙特卡罗策略梯度算法详解:python从零实现

REINFORCE 是一种基础的策略梯度算法,通过蒙特卡洛方法直接优化策略,适用于离散和连续动作空间。它通过完整轨迹的折扣回报更新策略参数,但存在高方差问题,导致学习不稳定和收敛速度慢。为解决这些问题,可以采用基线减法、回报标准化或增加批次大小等方法。REINFORCE 虽然简单,但效率较低,通常作为理解更先进策略梯度和 Actor-Critic 方法的起点。这些改进方法通过引入价值函数估计或重要性采样等技术,有效降低了方差,提高了样本效率,从而在复杂任务中表现更优。

2025-05-04 00:00:00 1459 1

原创 强化学习中的策略评估与改进:从理论到实践(二)

本文深入探讨了强化学习中的策略评估与改进方法,详细介绍了如何通过贝尔曼方程求解最优策略。文章首先通过一个简单的环境示例,展示了如何通过解线性方程组来计算状态价值函数(V 函数)。随后,文章详细介绍了策略评估的迭代方法,包括其算法逻辑和收敛性证明。通过迷宫示例,文章进一步解释了如何利用 V 函数进行策略改进,并引入了策略改进定理。文章还介绍了策略迭代和价值迭代两种经典算法,并探讨了异步价值迭代和广义策略迭代(GPI)的概念。最后,文章总结了这些方法在实际应用中的重要性和局限性,并强调了在复杂环境中进行策略优化

2025-05-03 12:46:49 1172 3

原创 强化学习简介与核心概念:从理论到实践(一)

本文介绍了强化学习的基本概念与核心框架。文章解释了智能体如何通过与环境互动,采用试错方法学习最优策略,并探讨了奖励机制、累积回报、策略与价值函数(V函数和Q函数)等关键概念。同时,文章详细说明了贝尔曼方程及其在计算状态和动作价值中的作用,并提出最优策略与贝尔曼最优方程的关系。最后,文章讨论了强化学习在实际应用中的挑战,如高计算成本促使使用近似方法。

2025-05-03 01:00:00 1627 6

原创 Expected SARSA算法详解:python 从零实现

Expected SARSA是SARSA算法的一个优雅变体,它就像是SARSA的"数学家"版本。如果说SARSA是一个谨慎的决策者,那么Expected SARSA就是一个精于计算的统计学家。它不再满足于只看下一个动作,而是会计算所有可能动作的期望值。这就像是在说:“让我算算所有可能的结果,然后做出最理性的决定。Expected SARSA算法就像是强化学习世界中的"数学家"。它通过计算期望值来做出决策,虽然计算量较大,但往往能得到更稳定的结果。

2025-05-03 00:00:00 1919 3

原创 如何让模型聪明地选择特征:一种“蒸馏及选择”的方法

本文介绍了一种创新的“蒸馏及选择”(Distill-to-Select)方法,旨在通过模型蒸馏技术实现高效的特征选择和模型简化。该方法首先训练一个复杂的教师模型(如LightGBM),然后将其知识提炼到一个稀疏的学生模型(如逻辑回归)中,通过复合损失函数(结合预测损失、蒸馏损失和稀疏性损失)优化学生模型。实验表明,提炼后的学生模型不仅性能与教师模型相当,还具有更高的可解释性和稀疏性,能够自动筛选出核心特征。这种方法适用于多种模型架构,具有广泛的适用性和灵活性,为复杂模型的简化和特征选择提供了一种全新的解决方

2025-05-02 13:49:05 1183 5

原创 学习与规划的融合Dyna-Q:python从零实现

本文介绍了 Dyna-Q 算法,一种结合直接强化学习和基于模型规划的强化学习方法。Dyna-Q 通过学习环境的动态模型,并利用该模型生成模拟经验进行规划,从而提高样本效率。它特别适用于样本稀缺或交互成本高的场景。文章详细解释了 Dyna-Q 的工作原理,包括直接强化学习、模型学习和规划步骤,并通过一个 10x10 的网格世界任务展示了其训练过程和学习效果。实验结果表明,Dyna-Q 能够有效学习到最优策略,同时减少对真实环境交互的依赖

2025-05-02 00:00:00 1135 2

原创 近端策略优化PPO详解:python从零实现

介绍了近端策略优化(PPO)算法,这是一种广泛应用于强化学习任务的先进策略梯度算法。PPO通过引入截断代理目标函数,结合演员-评论家结构和广义优势估计(GAE),在保持策略更新稳定性的同时提高了样本效率。文章通过自定义网格世界环境的实验,展示了PPO在快速收敛到最优策略方面的高效性,并分析了其学习曲线,包括奖励、回合长度、策略损失、价值损失和策略熵等关键指标。此外,还探讨了PPO在训练大型语言模型(LLM)时的应用,尤其是在基于人类反馈的强化学习(RLHF)中的作用

2025-05-01 21:29:39 1415 41

原创 SARSA 算法详解:python从零实现

SARSA(State-Action-Reward-State-Action,状态-动作-奖励-状态-动作)是一种用于学习马尔可夫决策过程策略的强化学习算法。它是一种无模型、基于价值的**在线策略**学习算法。和离线策略的 Q-learning 不一样,SARSA 学习的是正在执行的策略的价值

2025-05-01 00:15:00 1631 3

原创 Qwen3 模型架构和能力概览

每个框架都实现了对 Qwen3 的关键能力的支持,包括思考模式和工具调用。这使得模型在保持推理效率的同时,能够拥有更大的总参数量。这些模型既能处理简短的互动,也能处理长篇内容,使其在从聊天机器人到文档分析的各种应用场景中都非常灵活。Qwen3 在语言模型架构方面取得了显著进步,涵盖了密集模型和混合专家(MoE)变体。这种多语言能力是集成在核心模型架构中的,而不是附加功能,因此在非英语任务中特别有效。思考模式显著提升了复杂推理任务的表现,而非思考模式则为简单查询提供了更高效的响应。

2025-04-30 09:22:54 1021 2

原创 机器学习算法速查表:数据科学家的宝藏秘籍

机器学习的世界里充满了各种各样的算法,每个算法都有自己的优势、劣势和应用场景。作为一名数据科学家,知道何时以及如何使用这些算法,是解决实际问题的关键。这份速查表将带你快速了解最流行的机器学习算法,解释清晰,例子实用,还加了一些有趣的表情符号,让学习过程更加轻松愉快!🎉。

2025-04-30 00:00:00 1586 1

原创 机器学习分类模型性能评估:应对类别不平衡的策略与指标

在机器学习中,构建分类模型时,我们常常面临数据类别不平衡的问题,例如在罕见疾病检测任务中,患病样本极少。这种情况下,传统的准确率指标可能误导模型性能评估,因为简单地预测多数类就能获得高准确率,但这忽略了少数类的检测。本文通过混淆矩阵引出多种性能评估指标,包括召回率、精确率和F1分数,详细探讨了它们在处理类别不平衡问题时的优势与适用场景,帮助读者理解如何选择合适的指标来准确评估分类模型的性能,从而更好地应对实际应用中的挑战。

2025-04-29 00:00:00 1083 3

原创 人工智能与机器学习:Python从零实现K-Means 算法

我的博客主页: https://lizheng.blog.csdn.netK-Means 可是我超喜欢的机器学习算法呢,因为它能帮我们发现数据里那些隐藏起来的模式呢。要是用得好的话,它能把你数据里的分组或者聚类情况展示得明明白白的,那可都是因为它背后那些严谨的数学原理呢。这在现实生活中可有不少厉害的应用呢。比如说呀,要是你负责分析一个电商网站的点击流数据呢,你就可以用 K-Means 把顾客按照他们点击的内容、加入购物车的东西,还有购买的东西来分成不同的群组呢。这就能帮你搞出一套个性化策略呢,根据顾客所在

2025-04-28 22:00:00 670 8

原创 开源AI代理框架大比拼:技术细节与开发者体验全解析

本文对当前热门的开源代理框架进行了全面对比,涵盖了从模型不可知性、数据传递方式到多模态支持、多代理协作等多个关键维度。这些框架包括 Agno、LangGraph、SmolAgents、Mastra、Pydantic AI、Atomic Agents、Autogen、CrewAI 和 Dify。通过详细分析每个框架的技术特点、开发者体验以及适用场景,本文帮助读者快速了解各框架的优势与局限,为选择合适的框架提供参考依据。无论是初学者还是资深开发者,都能从中找到适合自己的工具

2025-04-28 00:30:00 937 11

原创 如何解决无训练数据问题:一种更为智能化的解决方案

手动标注数据真的很费时间,而且买数据集又贵得要命,还不一定能完全符合你的需求。但这里有个令人兴奋的好消息,为啥不用 AI 来解决这个问题呢?别再依赖传统方法了,你可以用像 LLM(大型语言模型)和图像生成器这样的 AI 工具,为你的特定目标创建合成训练数据。如今有那么多开源和商业的 AI 模型可供选择,你可以根据自己的需求随意搭配,无论是想控制预算、提高效率,还是追求高质量的结果,都能轻松搞定。这对研究和商业来说,简直就是一场变革!

2025-04-27 20:00:00 1044 12

原创 基于物理信息的神经网络在异常检测Anomaly Detection中的应用:实践指南

物理信息神经网络(PINNs)代表了一种令人兴奋的新建模范式,这种范式正在各行各业迅速崭露头角。PINNs 最有前景的应用之一是复杂物理系统中的异常检测Anomaly Detection。这一应用尤其值得关注,因为它解决了传统机器学习方法在实践中一直难以克服的几个关键痛点。在这篇博客中,让我们通过回答实践者在采用基于 PINN 的方法进行异常检测Anomaly Detection时最常遇到的一些问题,深入探讨这个热门话题。

2025-04-27 13:11:54 1114 42

原创 理解Q学习Q-Learning完整指南:Python从零实现

Q学习是一种强化学习算法,它使代理能够通过试错发现哪些动作能产生最高奖励,从而学习在任何给定情况下采取的最优动作。它是一种无模型、基于价值的学习算法,这意味着它不需要环境模型就能从中学习。相反,它从在不同状态下采取动作后获得的奖励中学习。“Q"在Q学习中代表"质量”(quality) - 本质上表示给定动作在获得未来奖励方面的有用程度。

2025-04-26 02:30:00 446 31

原创 人工智能与机器学习:Python从零实现性回归模型

带你从零实现一个线性回归模型,不依赖任何机器学习库。从数据预处理、归一化,到实现 Sigmoid 函数、计算损失函数,再到用梯度下降找到最优权重,每一步都详细讲解。最后,咱们还用加州房价数据集测试了模型,准确率达到了80%,和 sklearn 的模型不相上下。

2025-04-26 00:00:00 1119 56

原创 超级详细的强化学习入门指南(python从零实现包教包会版)

强化学习(RL)是机器学习中一个令人着迷的领域,专注于训练智能代理在环境中做出最优的决策序列,以实现特定的目标。与监督学习(我们有标记数据)或无监督学习(我们在数据中寻找模式)不同,RL代理通过试错来学习。代理的(行, 列)元组。4个离散动作:0(上)、1(下)、2(左)、3(右)。确定性的。从(r, c)采取动作’上’会到达(r-1, c),除非r=0(墙)。+10:到达目标(9, 9)。-1:撞到墙(移出网格)。-0.1:采取任何其他步骤。到达目标或超过步数限制。

2025-04-25 21:55:26 1235 14

原创 人工智能与机器学习:Python从零实现逻辑回归模型

这篇文章带你从零实现一个逻辑回归模型,不依赖任何机器学习库。从数据预处理、归一化,到实现 Sigmoid 函数、计算损失函数,再到用梯度下降找到最优权重,每一步都详细讲解。最后,咱们还用心脏病发作数据集测试了模型,准确率达到了80%,和 sklearn 的模型不相上下。

2025-04-25 18:14:44 1275 10

原创 人工智能与机器学习:二元分类决策树构建指南

本文围绕构建用于二元分类的决策树展开。先介绍决策树的概念、结构及元素,以邮件欺诈检测为例说明其工作原理。接着讲解构建决策树的基尼不纯度指标,包括分类和连续变量的计算方法。最后给出Python实现,定义 DIYClassificationDecisionTree 类,包含超参数设置、数据划分、拟合及构建树等方法,助读者掌握决策树构建技巧。

2025-04-24 20:30:00 1067 7

基于langchain/llamaindex的20多种RAG技术实现

一个全面的检索增强生成(RAG)实现集合,基于两大流行的AI框架LangChain和LlamaIndex,提供了20多种不同的RAG实现方案。这些实现覆盖了从基础到高级的各种RAG应用场景,旨在为开发者和研究人员提供丰富的参考和即用解决方案。 ## 核心特点 - **多样化的实现方案**:包含20多种不同架构和配置的RAG实现 - **双框架支持**:同时基于LangChain和LlamaIndex两大AI框架 - **模块化设计**:每个实现都是独立的,可轻松集成到现有项目中 - **场景覆盖全面**:从简单文档问答到复杂多模态检索应有尽有 - **最佳实践集成**:融合了RAG领域的最新研究成果和工程实践 ## 技术栈 - **核心框架**:LangChain, LlamaIndex - **语言模型**:支持多种LLM(如GPT, Claude, LLaMA等) - **向量数据库**:Pinecone, Weaviate, FAISS, Chroma等 - **数据处理**:多种文档加载器和文本分割策略 - **高级特性**:查询改写、重排序、混合搜索等 ## 适用场景 本项目适合: - 希望快速实现RAG功能的开发者 - 需要比较不同RAG架构效果的研究人员 - 想要学习RAG最佳实践的学生和爱好者 - 为企业应用评估RAG解决方案的技术决策者 ## 项目结构 每个实现为一个独立的md文件包含完整的代码、配置说明,让您可以快速运行和测试不同方案的效果。我们提供了详细的文档说明每种实现的优缺点和适用场景。 通过这个项目,您将获得关于如何构建高效、可靠的RAG系统的全面知识,并能够根据具体需求选择最适合的实现方案。

2025-04-22

可视化详解与实战实现Corrective RAG代理工作流​

基于llama_index实现自我纠正RAG

2025-04-15

python源代码详解检索增强生成(RAG)

采用系统化且实用的方法对**检索增强生成(RAG)**进行讲解,将复杂的高级技术分解为易于理解的实现步骤。该实现并未依赖诸如 `LangChain` 或 `FAISS` 等专用框架,而是完全基于常见的 Python 库(如 `openai`、`numpy` 和 `matplotlib` 等)构建。其目标明确:提供简洁、清晰且易于阅读、修改与学习的代码示例。通过聚焦于基础原理,该项目有效降低了 RAG 技术的理解门槛,帮助用户深入掌握其工作机制。

2025-04-14

langchain RAG from scratch

从零基础开始使用 LangChain 实现检索增强生成(RAG)的课程

2025-04-14

DATA SCIENCE PDF 数据科学 PDF

数据科学 PDF(530 多页),其中包含 150 多个核心数据科学/机器学习课程。

2025-04-14

大型语言模型、预训练模型与嵌入模型的选型指南及应用场景解析

内容概要:本文详细介绍了大型语言模型(LLMs)、预训练模型和嵌入模型的区别及其各自的应用场景。首先阐述了三者的特性和优势,接着讨论了它们在不同任务中的适用性,如对话系统、文本分类和聚类等。文中通过对比性能指标、资源需求、可扩展性和定制能力,帮助读者理解如何根据具体需求选择最优模型。最后,通过三个真实的案例研究展示了不同类型模型的成功应用,进一步明确了各自的优劣。 适合人群:从事自然语言处理(NLP)及相关领域工作的研究人员和技术人员,尤其是需要选择和部署AI模型的从业者。 使用场景及目标:①帮助读者理解大型语言模型、预训练模型和嵌入模型的特点;②指导读者根据任务复杂性、资源限制等因素选择合适的模型;③提供具体的实施步骤和代码示例,便于实际操作。 其他说明:文章不仅涵盖了理论层面的知识,还包括了实际应用中的经验分享和技术实现的具体方法,是一份兼具深度和广度的参考资料。

2025-04-01

基于Label Studio的文档标注方法及应用场景

内容概要:本文档详细介绍了利用 Label Studio 进行文档标注的具体流程与配置方法。主要包括系统环境搭建与Label Studio安装指引,随后依次讲述了从项目创建、数据加载直至数据导出及格式转换等步骤的操作指南,并深入探讨了实体、关系抽取与文档分类等多种任务类型的设置与执行。此外还提供了额外配置选项以供灵活调整任务细节。 适合人群:从事机器学习相关工作的专业人士,尤其侧重于信息提取与自然语言处理的应用开发人员和技术爱好者。 使用场景及目标:帮助开发者掌握高效、精确地准备用于训练深度学习模型所需的数据集的技术能力。能够支持诸如金融票据、法律文件以及其他结构化文本资料中的重要元素识别等工作需求。 其他说明:文中涉及大量实战案例展示,附带源码片段便于理解和操作演示。强调了合理的负样例构造对于提高特定类型AI模型性能的作用,并提供了关于比例分配等方面实用建议。

2025-03-25

图数据库基准测试:TigerGraph与其他图数据库的性能对比及优势解析

内容概要:本文档详细评估了 TigerGraph 与其他图数据库(如 Neo4j、Amazon Neptune、JanusGraph 和 ArangoDB)在数据加载和查询性能方面的表现。测试环境使用相同的 Amazon EC2 硬件平台,并通过加载和查询两个不同规模的数据集(Graph500 和 Twitter 用户跟随关系图)来衡量性能。测试内容包括数据加载时间和效率、加载后的磁盘存储空间、单节点及分布式环境中各种复杂图遍历查询的响应时间。结果显示,TigerGraph 在各个方面表现出显著优越的性能,尤其是在大规模并行处理和存储效率方面。 适用人群:从事图数据库及其应用的开发人员、研究人员及技术决策者。 使用场景及目标:通过具体的性能数据和实际用例,为图数据库的选择和技术选型提供参考依据,特别是对于需要高效处理大量关系数据的应用场景。 其他说明:所有测试代码及相关配置均可在官方 GitHub 页面获取,方便重现。文中提到 TigerGraph 在欺诈检测、医疗保健等多个行业的应用场景,突显其广泛的商业价值。

2025-03-25

RAG学习RL测试数据集

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等https://blog.csdn.net/qq_36603091/category_12923460.html?spm=1001.2014.3001.5482

2025-03-25

企业AIGC商业落地应用解析:技术进步引领企业服务创新与优化

内容概要:本文聚焦于生成式人工智能(AIGC)技术的发展及其在企业层面的应用前景。首先阐述了AIGC的核心概念及对其市场全貌的认识,探讨了各类服务商的角色和选择依据,并分析了AIGC可能改变的传统场景及新模式。文中指出,AIGC不仅革新了市场营销手段,还在客服、办公自动化等多个领域提供了新的解决方案。尤其值得注意的是,它能够在降低成本的同时提升用户体验,并通过深度集成进入企业的现有数字架构,实现快速高效的业务转型。 适合人群:对AIGC感兴趣的企业管理者和技术从业者,特别是那些希望借助先进AI技术推动业务增长或改进内部运作效率的人士。 使用场景及目标:文章适用于希望理解AIGC如何帮助企业应对挑战并抓住机遇的情境。通过了解具体的实施案例,如营销内容自动化、客户服务智能化等,可以使企业找到适合自己情况的应用切入点,促进创新发展。此外,文章还有助于制定合理的投资策略,评估采用AIGC所带来的潜在收益。 其他说明:本文还涉及不同类型的收费模式对中小型和大型企业在应用时的选择启示,强调数据安全性和系统兼容性为两大重点考量因素。为了最大化发挥AIGC的作用,建议企业培养相关技术团队并重视长远规划

2025-03-24

基于单元格分割OCR及插图检测的表格识别算法

基于单元格分割OCR及插图检测的表格识别算法

2025-03-24

RAG技术体系全解析:发展脉络、框架演进与增强技术

算法部门内部RAG学习交流分享

2025-03-23

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等https://blog.csdn.net/qq_36603091/category_12923460.html?spm=1001.2014.3001.5482

2025-03-20

招标投文本NER/REL数据集-中标单位与金额解析及其关联信息整理

内容概要:本文提供了大量的招标投标相关数据片段,涵盖的内容广泛,主要包括了各种类型的项目如工程类、设备采购、服务外包等。这些数据片段详尽展示了不同中标单位、金额及对应的关系。例如,在中标情况方面有多个中标单位的具体名称及各自对应的金额。此外还有对特定项目的开标时间和地点、合同签订和公示截止日期、预算金额和工程建设地点等一系列具体参数的数据记录。所有中标信息都明确了各单位中标的产品或项目、中标金额和关联单位地址等重要细节。 适用人群:本文适合于需要掌握详细项目运作情况的专业人士,包括但不限于参与政府、企事业单位采购部门工作人员以及招投标领域的研究人员或从事审计监察工作的相关人员。 使用场景及目标:本文可用于了解某个特定地区或某项业务领域的市场竞标动态及趋势走向;对于想了解某行业市场参与者竞争态势的人群而言非常有用;同时还可以用于学习如何解读官方发布的招投标结果通告,以作为实际工作参考。 其他说明:文中包含了大量的实际项目实例,这有助于读者更加直观地理解和分析各类信息之间的关系。此外还提供了完整的数据链以便追溯每一个中标背后的详细流程与规定。通过对这些数据的学习可以提升用户对该领域的认知水

2025-03-17

面向统一端到端模型的下一代光学字符识别理论与GOT-OCR-2.0模型解析

内容概要:本文介绍了一种全新的光学字符识别(OCR)系统——OCR-2.0及其代表性模型GOT。传统的OCR系统由于模块化的复杂流程导致高昂维护成本和低效的文本感知能力。GOT模型拥有5.8亿参数,集成了高效压缩编码器与长上下文解码器,在处理多类型的文本识别上具有优越性能,支持常见图像类型和复杂的任务如乐谱、化学公式、图表、甚至几何图形。它还支持动态分辨率以及多页OCR,并能在高交互性和特定区域识别上表现出色。作者通过对不同模型的对比实验展示了该模型的有效性和实用性。 适用人群:对OCR研究和应用感兴趣的学术研究人员、从事文字识别领域的软件开发者和技术爱好者。 使用场景及目标:主要适用于科研论文转换成PDF文档、文献档案数字化、表格公式的结构化抽取等各种场景中的高质量文字识别需求。此外还包括需要高级OCR特性的场景比如细粒度文档理解、图表提取、以及批量PDF处理等方面。 其他说明:文章强调了OCR的发展方向是从传统单一功能向更加综合全面的方向转变,并提出了未来工作的改进建议,例如支持更多语种及其他特殊字符形态。同时提供大量详实的数据来源说明和实验结果比较,论证了所提出方法的优势。

2025-03-13

基于Label Studio的文本标注工具及其实现自然语言处理任务的操作手册

内容概要:本文档提供了利用Label Studio进行文本标注的具体操作步骤,涵盖了安装配置方法、多种标注类型的创建、数据准备、标注过程以及最后数据导出和转换。重点阐述了不同任务,比如命名实体识别、关系抽取、事件抽取、文本分类、句子女情感分类以及实体/评价维度分类的实现方法。并且深入解析了这些自然语言处理(NLP)应用过程中的一些注意事项和技术细节,尤其是关于prompt构造的原则及其如何影响模型性能。 适合人群:从事自然语言处理领域的研究人员、工程师和相关专业学生,以及希望借助Label Studio开展高质量语料加工的技术团队。 使用场景及目标:该文档主要用于指导如何快速有效地建立起自己的文本标注平台来支持下游机器学习项目的推进;确保用户可以独立完成整个流程,从而为模型训练提供高质量的数据资源。同时,帮助开发者更好地理解UIE框架的需求并优化标注方案。 其他说明:本文档不仅介绍了一般性的操作步骤,还针对特定的配置选项给予了详细的解释,使得即便是初次接触Label Studio或者PaddlePaddle平台的新手也能顺利地执行各种复杂的文本标注任务。它强调了一些关键点如合理的提示词

2025-03-12

使用DeepSeek进行高效学习、工作与旅行规划的经验与技巧详解

内容概要:本文详细讲述了用户如何借助AI助手DeepSeek进行高效的学习、工作和娱乐活动,包括为幼儿制定全英语教育课程,设计系统的西班牙语学习计划以及规划一次安全舒适的西班牙旅行,涵盖了使用和提问的具体策略和心得分享。DeepSeek不仅展示了强大的逻辑思考和推理能力,而且其出色的结构化表达和针对性强的答案让人赞叹。文中列举了大量的实际案例和应用场景,突显了该工具的强大功能性。 适合人群:想要提升自身效率的上班族、正在学习新的语言和技术的学生,以及有兴趣深入了解如何有效利用AI进行日常生活的规划与优化的人群。 使用场景及目标:适用于各类涉及学习新知识、项目策划、个人发展等方面的需求。尤其当您希望通过有效的沟通方式获取更高质量的回答,并且希望通过实践来不断提升自己时,DeepSeek 是非常好的工具。 其他说明:值得注意的是,为了得到最好的交互体验,用户应当提供足够的背景信息和明确的需求描述;对于不确定的部分持续追问也能进一步获得更加详尽的帮助。总之,本文旨在通过具体的应用案例帮助读者更好地理解和运用DeepSeek。

2025-03-11

从零构建RAG-基于提示连接检索增强生成与LLM的技术解析及应用场景

内容概要:本文作者 Lance Martin 是来自 LangChain 公司的软件工程师。文档首先解释了RAG(Retrieval-Augmented Generation,检索增强生成)的动机,即通过引入文档资料到LLM的语境窗口来提升机器理解和作答复杂度的能力。之后深入浅出地介绍了如何利用prompt将文档搜索检索系统与大型语言模型(LLMs)进行链接,并附有实例网站参考资料供读者进一步学习。最后,文中提供了详细的代码演示,有助于理解整个过程的实际运作方法。 适合人群:对AI对话系统有兴趣并具有一定程序背景的开发者和技术爱好者。 使用场景及目标:帮助研究者和技术工作者更好地掌握RAG技术及其具体实施手段,提高问答系统的精度和服务质量。 阅读建议:本材料旨在引导读者理解从无到有创建RAG的基本概念以及操作流程,在实践的同时可以参阅提供的案例网站链接来加深对RAG的理解。同时也可以跟着代码讲解进行实际编码尝试,体验LLM驱动的应用开发魅力。

2025-03-11

自然语言处理技术在金融资管领域的落地实践

自然语言处理技术在金融资管领域的落地实践

2025-03-11

区块链应用与测试:涵盖用户注册页面测试、文档分类及应用部署

内容概要:本文详细介绍了区块链应用的不同方面,其中包括了针对一个即将开发的用户论坛进行的用户注册页面测试,明确了测试设计的具体要求和答案,如用户名有效和无效等价类的界定。接下来是对各种开发文档(开发计划、需求说明书)、产品文档(产品手册、用户指南)及管理文档(进度记录)的分类,以及如何运用 Git 版本控制工具协同编辑文档。此外,还讲述了区块链系统的单节点区块验证过程,包括五个具体的检查点(时间戳、随机数、哈希值、链链接和交易有效性),并且提供了一个简单的 Flask Web 服务器构建示例和区块链系统交易对象属性解释,如发送方和接收方地址及其数字签名等内容。 适合人群:对于想要深入了解区块链测试方法、Git 操作、区块链应用程序开发,尤其是关注用户注册页面测试和单节点区块链系统区块验证的技术人员和学生而言非常有用。 使用场景及目标:旨在帮助读者掌握用户界面功能验证的方法论,提高区块链应用程序的安全性和稳定性。同时让开发者更好地管理多份技术文档,优化项目的开发流程,并能够初步了解 Flask 框架的应用。最后,为深入研究区块链系统底层架构提供了基础理论和实践指引。 其他说明:文档

2025-03-11

推理模型构建:四种主要方法和技术进展综述

内容概要:本文全面解析了构建和改进推理模型(推理能力增强的大规模语言模型,LLM)的四种主要方法:推理时间扩展、纯强化学习(RL)、监督微调加强化学习(SFT + RL),以及纯监督微调和蒸馏(Distillation)。文中介绍了 DeepSeek团队通过这几种方法开发出的多个模型,特别是在不同应用场景和预算条件下的实践效果。文中不仅讲解了各个技术的优势与局限,还包括对模型训练成本、开发难度、效率等方面的专业讨论。 适合人群:对自然语言处理、推理模型构建感兴趣的科研工作者、工程师及研究生。 使用场景及目标:①帮助研究者掌握不同类型推理模型的特点和优劣,从而选择最适合的应用方法;②引导开发者根据自身条件制定高效合理的建模计划,尤其是面对复杂问题或有限预算时;③为有兴趣了解前沿AI技术和模型架构的学习者提供有价值的参考资料。 其他说明:本文提供了丰富的实例和技术细节,涵盖了目前主流的技术手段和发展方向。同时也对比了几款知名推理模型,如 DeepSeek-R1和疑似 OpenAI的 o1,并对未来发展趋势提出了预测。作者希望通过此文激发更多关于低成本高质效推理模型的研发思路。

2025-03-10

智能投标领域的星火投标平台-利用大模型技术提高编标效率与标书质量的应用指南

内容概要:本文介绍了一款面向投标的专业工具——星火投标。该平台依托星火大模型技术,实现了从投标所需的各种资信材料自动化解析到通过知识图谱生成投标方案的一站式解决方案,涵盖高精度投标文件创作、以及自动检测和纠正标书中潜在缺陷的功能,以此提升编标工作的速度和精准度,最终增加企业的中标几率。特别适用于建筑、能源、制造等多个行业的工程项目招投标工作中。 适合人群:参与各类大型复杂投标项目的从业人员及其负责团队,包括但不限于项目管理人员、合同专家和其他需要准备高质量标书的专业人士。 使用场景及目标:该软件能够帮助客户在短时间内高质量地完成标书制作任务。它可以自动分析以往的成功案例及相关文档资料来辅助新的标书创建工作,确保新文档与既往成功的投标保持连贯性和专业水平;另外它还具备智能化检查功能,用来发现可能存在的错误点并及时给出改进意见。 其他说明:星火投标平台的具体操作方法非常友好简单,在官网提供的详细指导下,即使是初学者也能迅速上手,并且提供了多途径客服支持选项以确保用户体验流畅无阻。

2025-03-10

智慧政策系统的多功能综合应用及其实现方案-聚焦文件解析、知识图谱和智能问答

内容概要:本文介绍了智慧政策系统的总体架构及其具体模块功能。它是一个涵盖政策信息查询、自动测评及反馈、智能化处理与分析等多方面的集成平台。尤其针对当前政务信息化改革的需求,系统利用前沿的大数据、自然语言处理(NLP)等AI技术支持,如通过paddleOCR、Layoutreader等技术处理各类公文;同时运用文本解析、关键字提取等方式整理并归类相关信息建立知识库;借助向量化索引提高搜索性能,并通过实体及联系建立知识图谱以便用户更好地理解和利用数据。此外还提供了基于LLM的语言模型问答服务以及企业专属财税福利计算器等功能。最终实现了高效、全面的服务政府机关到民间团体乃至个人的目标。 适合人群:政府官员、政策研究专家、企业和机构决策者、技术人员和其他希望了解如何运用先进技术优化公共信息服务的相关从业者。 使用场景及目标:本系统适用于需要获取最新最全政策动向的单位和个人,在面对复杂繁琐的官方文书时希望能够得到便捷有效的指引和支持的人群尤为适用。其主要目的在于打破信息孤岛,增强政令传达效率的同时也让受益群体更容易享受到应有的权益保护和服务质量。 其他说明:文中特别强调了对政策内容深入分析和技术

2025-03-03

DeepSeek高效使用技巧:职场、学术、自媒体的内容生成与问题求解利器

内容概要:文章探讨了深受欢迎的AI工具DeepSeek的有效利用方法。文中指出多数使用者未能发挥其最大价值主要是由于不当提问导致的非有效回应。为此,本文通过实例展示了一个简化的但极为有效的“4步提问法”,该方法包括明确提问者的身份背景、设定具体的任务内容、加入必要的细节约束以及指定所需的输出格式。对于不同的群体,如职场白领制作报告或PPT、大学生进行文献查阅或优化论文,乃至网络自媒体工作者撰写个性化博客或推广文案等方面,给出了详尽的应用指导,并强调了如何根据应用场景调整询问方式从而获得最佳效果。 适用人群:适用于想要改善与优化自身工作效率,或是寻求更优质的学术研究支持,亦或是期望通过网络媒体创作吸引观众并增强影响力的各界人士。 使用场景及目标:无论是为了在工作场合中展现专业的数据分析、报告制作等技能;还是为了帮助学生快速准确地搜索相关资料并且有效避免学术不端行为(如查重率过高),又或者是为个人或品牌的自媒体平台创造出更具创意性、话题性的高质量文章,此文中介绍的方法都能极大地提升使用者对DeepSeek这一强大工具的认知度及其实际应用效能。 其他说明:值得注意的一点在于,当使用该公式式的

2025-03-01

DeepSeek内部科普材料

DeepSeek内部科普材料旨在向用户和相关人员介绍DeepSeek的技术背景、功能特点及使用案例等。

2025-03-01

语音对话大模型及其基准测试的全面综述与最新进展

内容概要:本文档对语音对话大模型进行了系统性的总结,涵盖了最新的研究论文和技术资源。首先介绍了通用音频、语音和音乐理解模型(如LTU、SALMONN等)的研究成果,并讨论了联合音频和语音理解的进展。接下来探讨了几项重要的端到端语音对话系统模型(如SpeechGPT、VITA、Moshi等),并对其核心技术进行了详细解析。文档还涉及了多项基准测试(Benchmark)工具,如AIR-Bench、SD-Eval、AudioBench等,为评估模型性能提供了参考依据。最后,文档介绍了全双工建模技术,旨在实现实时对话系统(例如MiniCPM-duplex、SyncLLM)。此外,还包括两份关于语音语言模型近期发展的综述性文献。 适用人群:从事自然语言处理、语音识别、人机交互以及深度学习领域的研究人员、学生或相关从业者。 使用场景及目标:适用于希望深入了解语音对话大模型架构、算法改进及实际应用效果的专业人士。帮助读者获取当前最前沿的技术资料,指导未来研究方向。 其他说明:此文档汇集了大量高影响力的会议论文和技术报告链接,便于进一步深入学习和探索相关领域知识。同时列出了一些开源项目地址,方便感兴趣

2025-03-01

DeepSeek15天指导手册

DeepSeek15天指导手册

2025-02-14

DeepSeek如何赋能职场应用?从提示语技巧到多场景应用-清华大学

DeepSeek如何赋能职场应用?从提示语技巧到多场景应用-清华大学

2025-02-14

DeepSeek从入门到精通-清华大学-202502

DeepSeek从入门到精通-清华大学-202502

2025-02-14

OpenAI官方文档《提升推理能力的最佳实践》

OpenAI官方文档《提升推理能力的最佳实践》

2025-02-14

入门深度学习--探秘lstm

一次部门内部分享的PPT

2021-01-06

自适应确定DBSCAN算法参数的算法研究_李文杰.pdf

传统DBSCAN算法需要人为确定Eps和MinPts参数,参数的选择直接决定了聚类结果的合理性,因此提出一种新的自适应确定DBSCAN算法参数算法,该算法基于参数寻优策略,通过利用数据集自身分布特性生成候选Eps和MinPts参数,自动寻找聚类结果的簇数变化稳定区间,并将该区间中密度阈值最少时所对应的Eps和MinPts参数作为最优参数。实验结果表明,该算法能够实现聚类过程的全自动化并且能够选择合理的Eps和MinPts参数,得到了高准确度聚类结果。

2020-04-02

pyltp安装wheel文件

完美解决python3.6安装pyltp出现的各类错误,各类vs错误,编译错误均可完美解决

2018-08-23

文本挖掘技术——北大杨建武教授

教授的文本挖掘技术课程ppt 包含文本情感分析 特征提取

2018-06-28

机器学习实战 英文版

MachineLearning机器学习实战 英文版 机器学习 大数据 深度学习 人工智能

2017-10-23

数据挖掘与机器学习 WEKA应用技术与实践 完整版

详细讲解weka,机器学习算法 书籍完整版 推荐下载 作者:袁梅宇出版社:清华大学出版社出版时间:2014年07月

2017-09-28

税务数据挖掘论文

有关税务税局挖掘的论文 包含逻辑回归 svm som、在税务稽查方面的应用 ,该资料包下载自知网,论文大部分是硕士论文及期刊论文 打开请用知网caj阅读器

2017-09-27

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除