在复杂工业环境中,异常检测面临独特的挑战,尤其是在数据稀疏和操作条件不断变化的背景下。在这种情况下,预测性维护(PdM)需要适应性强、可转移并能够整合领域特定知识。RAAD-LLM是一个用于自适应异常检测的新框架,利用与检索增强生成(RAG)相结合的大型语言模型(LLMs)解决了上述PDM挑战。通过有效利用领域特定知识,RAAD-LLM在时间序列数据中增强了异常检测能力,而无需在特定数据集上进行微调。该框架的适应机制使其能够动态调整对正常操作条件的理解,从而提高检测准确性。论文通过一个塑料制造厂的实际应用和Skoltech异常基准(SKAB)验证了这一方法。结果显示,与之前的模型相比,准确率从70.7提高到89.1,取得了显著改善。
RAAD-LLM框架通过整合检索增强生成(RAG)流程、多模态能力和零样本可迁移性,有效应对数据稀疏的工业环境挑战,在异常检测领域实现了显著进步。该模型通过访问外部知识库并丰富数据输入,提高了异常识别与分类的准确性和可解释性。此外,RAAD-LLM通过最小化误报率(MAR)的设计理念,确保了其在安全至上的工业应用场景中的适用性