该练练题目了,今天刷了蓝桥杯第五届B组决赛的题目。
emmm觉得这道题有个点睛之笔,就写写博客吧。
题目如下:
勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。
【数据格式】
输入一个整数 n (0<n<10000000) 表示直角三角形斜边的长度。
要求输出一个整数,表示满足条件的直角三角形个数。
例如,输入:
5
程序应该输出:
1
再例如,输入:
100
程序应该输出:
2
再例如,输入:
3
程序应该输出:
0
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
————————————
很平常的一道题
思路:暴力破解,注意下上下界就ok。
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc =new Scanner(System.in);
int xie =sc.nextInt();
double xie2=Math.pow(xie, 2);
int accmulate=0;
double upper =Math.sqrt(xie/2);
for(int i=xie-1;i>upper;i--){
double i2=Math.pow(i, 2);
for(int j=0;j<i;j++){
double j2=Math.pow(j, 2);
if(i2+j2==xie2){
accmulate++;
break;
}
if(i2+j2>xie2){
break;
}
}
}
System.out.println(accmulate);
}
恩。超时了。发现 代码没有什么可以更新的了,想想思维方面的。发现可以这样小动一下
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc =new Scanner(System.in);
int xie =sc.nextInt();
double xie2=Math.pow(xie, 2);
int accmulate=0;
int j=1;//点睛之笔
double upper =Math.sqrt(xie/2);
for(int i=xie-1;i>upper;i--){
double i2=Math.pow(i, 2);
for(;j<i;j++){
double j2=Math.pow(j, 2);
if(i2+j2==xie2){
accmulate++;
break;
}
if(i2+j2>xie2){
break;
}
}
}
System.out.println(accmulate);
}
完美。not accepable, be perferable;(语法不知道对不对,反正意思到了 哈哈哈)