已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。 求满足这个条件的不同直角三角形的个数

12 篇文章 0 订阅
5 篇文章 0 订阅
本文介绍了一种解决蓝桥杯竞赛中勾股数计数问题的有效算法。通过对直角三角形斜边长度为特定整数时,寻找其余两边为整数的所有可能组合,实现了快速计算不同直角三角形的数量。文章提供了两种实现方式,一种是简单的暴力破解,另一种则通过调整循环策略显著提高了效率。
摘要由CSDN通过智能技术生成

该练练题目了,今天刷了蓝桥杯第五届B组决赛的题目。

emmm觉得这道题有个点睛之笔,就写写博客吧。

题目如下:

  勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。


  已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。


  求满足这个条件的不同直角三角形的个数。


【数据格式】
输入一个整数 n (0<n<10000000) 表示直角三角形斜边的长度。
要求输出一个整数,表示满足条件的直角三角形个数。


例如,输入:
5
程序应该输出:
1


再例如,输入:
100
程序应该输出:
2


再例如,输入:
3
程序应该输出:
0




资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms




请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。


所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。

注意:主类的名字必须是:Main,否则按无效代码处理。

————————————

很平常的一道题

思路:暴力破解,注意下上下界就ok。

public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc =new Scanner(System.in);
		
		int xie =sc.nextInt();
		double xie2=Math.pow(xie, 2);
		int accmulate=0;
		
		double upper =Math.sqrt(xie/2);
		for(int i=xie-1;i>upper;i--){
			double i2=Math.pow(i, 2);
			
			for(int j=0;j<i;j++){
				double j2=Math.pow(j, 2);
				if(i2+j2==xie2){
					accmulate++;
					break;
					
				}
				if(i2+j2>xie2){
					break;
				}
			}
		}
		System.out.println(accmulate);
	}

恩。超时了。发现 代码没有什么可以更新的了,想想思维方面的。发现可以这样小动一下

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc =new Scanner(System.in);
		
		int xie =sc.nextInt();
		double xie2=Math.pow(xie, 2);
		int accmulate=0;
		int j=1;//点睛之笔
		double upper =Math.sqrt(xie/2);
		for(int i=xie-1;i>upper;i--){
			double i2=Math.pow(i, 2);
			
			for(;j<i;j++){
				double j2=Math.pow(j, 2);
				if(i2+j2==xie2){
					accmulate++;
					break;
					
				}
				if(i2+j2>xie2){
					break;
				}
			}
		}
		System.out.println(accmulate);
	}
完美。not accepable, be perferable;(语法不知道对不对,反正意思到了 哈哈哈)




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值