ContextualizedWeak Supervision for Text Classification,ACL2022

本文提出ConWea框架,利用BERT生成词的上下文化表示,通过聚类和种子词扩展解决文本分类中的语义模糊和上下文依赖问题。通过迭代训练,提升半监督文本分类性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在以生成标签对应关键词为核心思想的半监督文本分类中,现有的大多数方法都以一种与上下文无关的方式生成伪标签,因此,人类语言的模糊性和上下文依赖性一直被忽视。本文利用词出现的上下文化表示和种子词信息来自动区分同一词的多种解释,从而创建上下文化语料库,该语境化语料库进一步以迭代的方式训练分类器和扩展种子词,最终提升半监督文本表示的性能。

Overview

问题的定义还是那几种符号,跳过:
在这里插入图片描述
本文提出了一个框架,ConWea,构建语境话的弱监督模型。在这里,语境化体现在两个方面:语料库和种子词。因此,相应地开发了两种新技术来实现这两种语境化。

  • 选择BERT作为实现中的一个例子,以生成每个word occurrence的上下文化向量。这里的word occurrence可以理解为一个词的不同分身,用来表示一个相同的单词在不同句子、上下文中出现所体现的语
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值