题目
在一个 n * m
的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16,
22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ] 给定 target = 5,返回
true。给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
算法思路
由于数组中的数字各行各列都是降序排列,所以,可以通过从右上角位置处开始查找,即行i为0,列j为列的数值减一,
- 通过target和当前数组中的值进行比较,相等返回true;
- 如果target的值比当前值大,说明target肯定不会在这一行,行数加一,即i++;
- 如果target的值比当前值小,说明target肯定不会在这一列,列数减一,即j–;
- 不存在就会返回false。
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if(matrix == null || matrix.length == 0 || matrix[0].length == 0) return false;
int m = matrix.length, n = matrix[0].length;
int i = 0, j = n-1;
while(j >= 0 && i < m ){
if(matrix[i][j] == target) return true;
else if(matrix[i][j] > target) j--;
else i++;
}
return false;
}
}
复杂度
时间复杂度:最大为O(M+N),对二维数组进行了一次遍历。
空间复杂度:O(1),没有额外的空间开销。