[LBS学习笔记 1]高德数据可视化初体验

高德数据可视化初体验

背景

换了新工作,虽然还是java开发,但是之前搞做在线教育的,现在做地图相关的事。因此,花了些时间学了空间索引相关的内容,后期会写关于空间索引相关的内容,这期写地理数据可视化相关的内容。

准备

1.高德开发平台账号

高德开放平台:https://lbs.amap.com/

申请账号并在应用管理创建需要的key,如图

高德应用key

2.学习高德JS API文档

这里我主要关注多边形的展示,所以贴一下矢量图形的链接,有需要的可自行看其他内容
https://lbs.amap.com/api/jsapi-v2/guide/overlays/vector-overlay

然后,楼主又花了点时间在B站上学了JS基本语法相关的内容,然后就可以动手做了

开发

后端接口

接口主要提供国内的行政区划数据,即省市区的编码和多边形围栏数据,在网上google找了一个可以用的数据https://github.com/Civitasv/DataV_GeoJSON,将区级别的json数据解析出来,导入数据库里,这样我们就有了基础数据。

然后提供一个接口,可以返回多边形边界数据

    @GetMapping("/queryByAdcode")
    @CrossOrigin
    public ShapeListDTO queryByAdcode(@RequestParam("adcode") Integer adcode) {
        log.info("queryByAdcode,adcode:{}", adcode);
        return cityService.queryByAdcode(adcode);
    }


//返回对象数据结构
@Data
public class ShapeListDTO {
    private Integer total;
    private List<String> shape;
}

前端

前端通过ajax请求后端接口获取数据,然后调高德JS API方法将多边形边界数据在页面上渲染即可

直接贴代码:

<!doctype html>
<html>
<head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="initial-scale=1.0, user-scalable=no, width=device-width">
    <link rel="stylesheet" href="https://a.amap.com/jsapi_demos/static/demo-center/css/demo-center.css"/>
    <title>地图显示</title>
    <style>
        html,
        body,
        #container {
            width: 100%;
            height: 100%;
        }
    </style>
</head>
<body>
<div id="container"></div>
<!-- 加载地图JSAPI脚本 -->
<script src="https://webapi.amap.com/maps?v=2.0&key=【你申请的key】"></script>
<script>
    var req = new XMLHttpRequest();
    req.open("GET", "http://127.0.0.1:8080/queryByAdcode?adcode=110000")
    req.onload = function () {
            if (req.responseText == '') {
                errorMsg.style.display = 'block'
            } else {
                console.log(req.responseText)
                var map = new AMap.Map('container', {
                    viewMode: '3D', // 默认使用 2D 模式,如果希望使用带有俯仰角的 3D 模式,请设置 viewMode: '3D',
                    zoom: 11, //初始化地图层级
                    center: [116.397428, 39.90923], //初始化地图中心点
                });

                var resp = JSON.parse(req.responseText);
                var total = resp.total;
                var shapes = resp.shape;
                for (var i = 0; i < total; i++) {
                    var poly = shapes[i];
                    var points = poly.split(",");
                    var list = [];
                    for (var j = 0; j < points.length; j++) {
                        var pp = points[j].split(" ");
                        list.push(pp);
                    }
                    var polygon1 = new AMap.Polygon({
                        path: list,          //设置线覆盖物路径
                        fillColor: '#42cee0', // 多边形填充颜色
                        borderWeight: 2, // 线条宽度,默认为 1
                        strokeColor: 'red', // 线条颜色
                    });
                    map.add(polygon1);
                }
            }
    }
    req.send();

</script>
</body>
</html>

效果图

在这里插入图片描述

代码

我的代码仓库地址,这里只有后端代码:https://github.com/longbig/LBS-learn

<think>好的,我现在需要解决用户的问题:如何使用高德地图进行经纬度数据可视化,并提供示例教程。用户提到了高德地图API、经纬度换算和数据可视化,所以我要结合这些点来组织答案。 首先,我应该回忆一下高德地图API的使用流程。根据之前的引用内容,用户需要申请API密钥,然后通过地理编码接口将地址转换为经纬度。之后,可能需要使用高德可视化平台或者Python库来展示数据。 接下来,我需要确认步骤的正确性。首先申请密钥,这部分引用[1]和[3]都提到了,必须包含Key作为参数。然后,地理编码的API地址是https://restapi.amap.com/v3/geocode/geo,用户需要发送请求并解析返回的JSON数据获取经纬度,如引用[3]所述。 数据可视化部分,用户可能需要使用高德的轻量级可视化平台,如引用[1]提到的。此外,可能还需要Python代码示例,比如使用requests库调用API,处理返回数据,然后生成CSV文件,再上传到高德平台。这部分需要详细说明每一步的操作,包括代码示例和注意事项。 然后,用户可能需要示例教程的步骤。我需要分步说明:注册账号申请Key,Python调用API转换经纬度,数据整理成CSV,登录高德可视化平台,上传数据,配置地图样式,发布可视化结果。每个步骤要简明,并提供代码片段,如引用[2]中的例子,展示如何批量转换地址到经纬度。 还需要考虑可能的错误点,比如密钥未正确填写,地址格式不正确导致无法解析,或者API返回的状态码处理。代码示例中应该包含错误处理,比如检查status是否为'1',否则提示错误原因,如引用[3]中提到的返回参数解析。 关于可视化部分,除了高德平台,可能还有其他方法,比如使用Python的folium库生成地图,但根据引用内容,用户更倾向于使用高德自家的工具,所以重点放在他们的平台上。但也可以简要提到其他方法作为补充,让用户有更多选择。 最后,生成相关问题,考虑用户可能的后续疑问,比如如何处理大量数据、优化性能、解决地址解析不准确的问题,以及如何结合其他工具如Tableau进行可视化。这些问题需要自然相关,帮助用户深入探索。 现在需要确保所有步骤清晰,代码正确,并且符合LaTeX格式要求。数学表达式使用$...$,独立公式用$$...$$,但在这个问题中可能数学内容不多,主要注意代码块的格式和引用标记的正确添加。引用标记需要放在相关说明的末尾,如步骤1完成后引用[^1][^3]。 检查是否所有引用都正确对应,比如引用[1]、[2]、[3]是否准确描述了申请密钥、地理编码接口和可视化步骤。确保代码中的参数如key、address等变量名正确,并注释清楚每个部分的作用。 最后,确保回答结构符合用户要求:分步骤说明,代码示例,可视化操作步骤,注意事项,及相关问题。语言使用中文,避免使用Markdown,但代码块需要用```python等格式。同时,回答真实可靠,基于提供的引用内容,不添加未提及的信息。</think>### 高德地图经纬度数据可视化分步指南 #### 一、申请高德API密钥 1. 访问[高德开放平台](https://lbs.amap.com/),注册开发者账号。 2. 进入「控制台」→「应用管理」→「创建新应用」,选择「Web服务API」类型。 3. 在应用详情页获取`Key`(密钥),格式示例:`d3a***d56`。 #### 二、Python调用地理编码API ```python import requests import pandas as pd def get_geocode(address, key): url = "https://restapi.amap.com/v3/geocode/geo" params = { "address": address, "key": key } response = requests.get(url, params=params) data = response.json() if data["status"] == "1" and data["geocodes"]: location = data["geocodes"][0]["location"] # 格式:"经度,纬度" return location.split(',') return [None, None] # 示例调用(需替换实际Key) key = "your_api_key" addresses = ["北京市朝阳区望京SOHO", "上海市浦东新区陆家嘴"] results = [get_geo(addr, key) for addr in addresses] df = pd.DataFrame(results, columns=["经度", "纬度"]) df.to_csv("locations.csv", index=False) ``` *注意:单日请求量超过配额会返回错误,需监控`data["infocode"]`* #### 三、高德地图可视化操作 1. 登录[高德地图可视化平台](https://viz.amap.com/) 2. 新建项目 → 选择「数据大屏」模板 3. 点击「添加数据」上传CSV文件,系统自动解析经纬度字段 4. 选择点图/热力图等样式,通过拖拽调整图层和配色 5. 点击「发布」生成可分享的链接或嵌入代码[^1] $$ 数据解析成功率 = \frac{\text{有效返回数}}{\text{总请求数}} \times 100\% $$ #### 四、注意事项 - 地址规范化:包含省市区等完整信息(如"广东省深圳市南山区科技园")可提高匹配准确率[^2] - 坐标系选择:高德使用GCJ-02坐标系,与WGS84(GPS标准)存在偏移,需注意数据一致性 - 性能优化:批量请求时建议使用异步IO,参考`aiohttp`库实现并发调用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卷福同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值