机器学习框架之 Transformer & 大模型

本文从结构原理与工程实践两个角度,深入解析 Transformer 的核心机制(Self-Attention、LayerNorm),并介绍主流大模型训练优化策略(ZeRO-Offloading、MoE、LoRA)及推理加速方法(TensorRT、ONNX)。


📖 目录


1. Transformer 基本结构

1.1 Self-Attention 自注意力机制

Self-Attention 通过 Query、Key、Value 机制,让模型学会“关注重点”。

类比:

老板(Query)提问项目进度,员工(Key)回应不同方向的信息,最终老板根据权重高低对员工的回答(Value)加权平均,形成判断。

步骤:

  1. 每个词生成 Q、K、V
  2. 计算 Q 与所有 K 的点积相似度 → 得到权重
  3. 权重加权所有 V,得到新的表示

最终结果是对输入序列每个词的“重新编码”,体现其与其他词的关联程度。


1.2 LayerNorm 层归一化

LayerNorm 对每一层的神经元输出进行标准化,使得训练更加稳定。

类比:

像考试后将学生成绩做“标准分”转换,去除偏差,但又通过 γ 与 β 恢复表达能力。

作用:

  • 避免梯度爆炸或消失
  • 平衡各特征的影响
  • 提升模型收敛速度与鲁棒性

2. LLM 训练优化技术

2.1 ZeRO-Offloading

目标:节省显存

方式:

  • ZeRO-1:参数拆分(多 GPU 分工)
  • ZeRO-2:梯度卸载(放入 CPU 内存)
  • ZeRO-3:参数 + 梯度完全卸载(支持 NVMe)

类比:

GPU 显存像画布,画布不够时,把部分草稿交给桌面(CPU)或仓库(NVMe)保存。


2.2 MoE(混合专家)

目标:降低计算成本,保持模型效果

机制:

  • 模型内含多个“专家模块”
  • 每次只激活部分专家(由 Router 路由决定)

类比:

问健康问题只找医生回答,不动用整个团队资源。

适合超大模型(如 GPT-4)


2.3 LoRA(低秩适配)

目标:轻量微调大模型,降低资源需求

机制:

  • 主模型冻结,仅插入小规模可训练模块

类比:

不改西装整体,只加领带、胸针等配饰来适配不同场合。

适用于多任务低成本定制化大模型(ChatGPT 应用常用)


3. 推理加速技术

3.1 TensorRT

专为 NVIDIA GPU 推理加速设计

优化点:

  • 层融合(合并卷积 + 激活等)
  • 精度压缩(支持 FP16 / INT8)
  • Kernel 调度 + 动态张量支持

适用场景:高性能 GPU 上的自动驾驶、AI 视频分析等


3.2 ONNX Runtime

跨平台高性能推理引擎

支持:

  • 多种设备:CPU、GPU、TPU、Edge
  • 多后端加速器:CUDA、TensorRT、OpenVINO、DirectML

适用场景:跨平台部署(如桌面 + 边缘 + 云)


4. 总结

模块技术作用/目标
表达能力Self-Attention动态关注上下文关键元素
稳定训练LayerNorm归一化防梯度爆炸/加快收敛
显存优化ZeRO-Offloading分阶段卸载 GPU 压力
计算优化MoE激活部分专家,节省开销
微调效率LoRA插入小模块,高效适配新任务
推理提速TensorRT / ONNXGPU 专用加速 / 通用跨平台部署

📌 YoanAILab 技术导航页

💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页

📚 包含内容:

  • 🧠 GPT-2 项目源码(GitHub)
  • ✍️ CSDN 技术专栏合集
  • 💼 知乎转型日志
  • 📖 公众号 YoanAILab 全文合集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yoan AI Lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值