本文从结构原理与工程实践两个角度,深入解析 Transformer 的核心机制(Self-Attention、LayerNorm),并介绍主流大模型训练优化策略(ZeRO-Offloading、MoE、LoRA)及推理加速方法(TensorRT、ONNX)。
📖 目录
1. Transformer 基本结构
1.1 Self-Attention 自注意力机制
Self-Attention 通过 Query、Key、Value 机制,让模型学会“关注重点”。
类比:
老板(Query)提问项目进度,员工(Key)回应不同方向的信息,最终老板根据权重高低对员工的回答(Value)加权平均,形成判断。
步骤:
- 每个词生成 Q、K、V
- 计算 Q 与所有 K 的点积相似度 → 得到权重
- 权重加权所有 V,得到新的表示
最终结果是对输入序列每个词的“重新编码”,体现其与其他词的关联程度。
1.2 LayerNorm 层归一化
LayerNorm 对每一层的神经元输出进行标准化,使得训练更加稳定。
类比:
像考试后将学生成绩做“标准分”转换,去除偏差,但又通过 γ 与 β 恢复表达能力。
作用:
- 避免梯度爆炸或消失
- 平衡各特征的影响
- 提升模型收敛速度与鲁棒性
2. LLM 训练优化技术
2.1 ZeRO-Offloading
目标:节省显存
方式:
- ZeRO-1:参数拆分(多 GPU 分工)
- ZeRO-2:梯度卸载(放入 CPU 内存)
- ZeRO-3:参数 + 梯度完全卸载(支持 NVMe)
类比:
GPU 显存像画布,画布不够时,把部分草稿交给桌面(CPU)或仓库(NVMe)保存。
2.2 MoE(混合专家)
目标:降低计算成本,保持模型效果
机制:
- 模型内含多个“专家模块”
- 每次只激活部分专家(由 Router 路由决定)
类比:
问健康问题只找医生回答,不动用整个团队资源。
适合超大模型(如 GPT-4)
2.3 LoRA(低秩适配)
目标:轻量微调大模型,降低资源需求
机制:
- 主模型冻结,仅插入小规模可训练模块
类比:
不改西装整体,只加领带、胸针等配饰来适配不同场合。
适用于多任务低成本定制化大模型(ChatGPT 应用常用)
3. 推理加速技术
3.1 TensorRT
专为 NVIDIA GPU 推理加速设计
优化点:
- 层融合(合并卷积 + 激活等)
- 精度压缩(支持 FP16 / INT8)
- Kernel 调度 + 动态张量支持
适用场景:高性能 GPU 上的自动驾驶、AI 视频分析等
3.2 ONNX Runtime
跨平台高性能推理引擎
支持:
- 多种设备:CPU、GPU、TPU、Edge
- 多后端加速器:CUDA、TensorRT、OpenVINO、DirectML
适用场景:跨平台部署(如桌面 + 边缘 + 云)
4. 总结
模块 | 技术 | 作用/目标 |
---|---|---|
表达能力 | Self-Attention | 动态关注上下文关键元素 |
稳定训练 | LayerNorm | 归一化防梯度爆炸/加快收敛 |
显存优化 | ZeRO-Offloading | 分阶段卸载 GPU 压力 |
计算优化 | MoE | 激活部分专家,节省开销 |
微调效率 | LoRA | 插入小模块,高效适配新任务 |
推理提速 | TensorRT / ONNX | GPU 专用加速 / 通用跨平台部署 |
📌 YoanAILab 技术导航页
💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页
📚 包含内容:
- 🧠 GPT-2 项目源码(GitHub)
- ✍️ CSDN 技术专栏合集
- 💼 知乎转型日志
- 📖 公众号 YoanAILab 全文合集