本文是【AI知识库系统与RAG落地系列】第三篇,系统讲解 知识库、向量库、智能体 这三个核心模块在 RAG 架构中的角色与功能,帮助大家把“概念”真正拆解成可落地的系统设计。
📌 一、为什么要拆解模块?
在RAG系统中,如果你只看到“上传文档→问答”这种演示,很容易忽视后端的设计细节。
✅ 真正上线可用的系统,一定要模块化:
- 谁负责存储文档?
- 谁负责做检索?
- 谁来调用大模型生成回答?
下面我们来逐个讲清楚。
✅ 二、知识库:管理文本知识的单元
本质:
存储、管理并切片文本数据,支持后续检索。
🟢 特点
- 将原始文档做切段、切片
- 处理成可检索的“知识单元”
- 维护元数据(来源、标签、主题)
📦 类比
就像一个图书馆的 书架,里面按段落/主题把书分好。
✅ 三、向量库:语义检索的核心
本质:
将文本段落编码为向量,支持相似度搜索。
🟢 特点
- 语义搜索 / 近邻搜索
- 支持多模型 Embedding
- 建立索引,加速查询
📦 类比
就像图书馆的索引卡,帮你快速找到最相关的书。
⚡️ 常用向量库
- FAISS
- Milvus
- Elasticsearch (支持向量字段)
- Pinecone
✅ 四、智能体(Agent):流程编排与任务执行
本质:
连接用户请求、检索结果、大模型调用,实现多步推理和上下文管理。
🟢 特点
- 解析用户意图
- 调用检索工具
- 调用大模型生成
- 维护对话上下文
📦 类比
就像一个图书管理员,理解你的问题 → 去检索 → 帮你整理好回答。
✅ 五、模块协作流程
用户问题
↓
智能体
↓
向量库检索(语义搜索)
↓
返回相关文本片段
↓
智能体拼接上下文
↓
调用大模型生成回答
↓
返回用户
✅ 每一步都可以独立模块化,也可以灵活替换。
✅ 六、举个常见实现的例子
用户提问:
“公司的退款政策是什么?”
检索过程:
- 转换为向量
- 在向量库检索到“退款政策”相关段落
生成过程:
- 将检索到的段落 + 用户问题一起送入 LLM
- 输出类似:
“公司的退款政策为30天内无理由退款……”
✅ 七、ES(Elasticsearch)语法示例
很多企业会用 ES 做文本和向量混合搜索。
🔎 示例查询结构
{
"query": {
"bool": {
"must": [
{
"match": {
"content": "退货流程"
}
},
{
"term": {
"category": "售后"
}
}
],
"filter": [
{
"range": {
"date": {
"gte": "2023-01-01"
}
}
}
]
}
}
}
✅ 解释:
must
:必须匹配的关键词或条件filter
:过滤条件(不影响得分)- 可结合向量字段做向量相似度排序
✅ 八、小结
模块 | 作用 | 类比 |
---|---|---|
知识库 | 存文本段落,做预处理 | 书架 |
向量库 | 做语义检索 | 图书馆索引卡 |
智能体 | 串联流程,调用大模型 | 图书管理员 |
✅ 拆开来看易维护
✅ 组装起来可构建灵活的 RAG 系统
🧭 本系列为 AI知识库系统与RAG落地系列第3篇(共四篇)
- 🧩 第1篇:什么是RAG?从零讲清Retrieval-Augmented Generation的概念与模块拆解
- 🚀 第2篇:RAG实战入门与工具推荐:免费与开源方案全解析
- 🌐 第3篇:知识库、向量库、智能体模块拆解:RAG系统核心结构全解析
- 🔔 第4篇:知识管理平台实践角色定位与工作拆解:RAG系统上线实施指南
📌 YoanAILab 技术导航页
💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页
📚 包含内容:
- 🧠 GPT-2 项目源码(GitHub)
- ✍️ CSDN 技术专栏合集
- 💼 知乎转型日志
- 📖 公众号 YoanAILab 全文合集