题目原文
统计所有小于非负整数 n 的质数的数量。
示例:
输入: 10
输出: 4
解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
解题思路
厄拉多塞筛法
说明:i是从(2,int(n**0.5)+1)而非(2,n).这个技巧是可以验证的,比如说求9以内的质数个数,那么只要划掉sqrt(9)以内的质数倍数,剩下的即全为质数. 所以在划去倍数的时候也是从i*i开始划掉,而不是i+i.
class Solution:
def countPrimes(self, n: int) -> int:
if n < 3:
return 0
else:
# 首先生成一个全部为1的列表
output = [1] * n
# 因为0,1不是质数,所以赋值为0
output[0], output[1] = 0, 0
# 此时从index=2开始遍历,output[2]==1,即表明第一个质数为2,然后将2的倍数的索引全部赋值为0
# 此时output[3] == 1,即表明下一个质数为3,同样划去3的倍数,以此类推
for i in range(2, int(n**0.5) + 1):
if output[i] == 1:
output[i*i:n:i] = [0] * len(output[i*i:n:i])
# 最后output中的数字1表明该位置上的索引数为质数,然后求和即可
return sum(output)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-primes