【机器学习】 聚类

聚类分析是无监督学习的一种方法,其目标是:使簇内数据之间具有高的相似性,不同簇数据之间具有高的差异性。

经典聚类算法分类:

  • 划分方法:对于给定的n个对象的数据集D,以及簇的数目k,划分算法将对象组织为k个划分。每个划分代表一个簇,使得“簇内相似性高,簇间相似性低”的划分作为最后的聚类结果,例如Kmeans。
  • 层次聚类方法:将数据对象建立一棵聚类树,树的简历策略有自底向上的策略(把小的类别逐渐合并为大的类别,这种方法称为凝聚)和自顶向下的策略(把大的类别逐渐分裂为小的类别,这种方法称为分裂)。在层次聚类的实际应用中,聚类通常终止于某个预先设定的条件,比如簇的数目达到某个预定的值,或者每个簇的直径都在某个阈值之内。
  • 基于密度的聚类方法:将簇看作数据空间中被低密度区域分给开的稠密的对象区域,有时也将这种低密度区域看作噪声。比如DBSCAN方法。
    在这里插入图片描述
    基于密度的簇,是基于密度可达性的最大密度相连对象的集合,不包含在任何簇中的对象被认为是噪声。因此DBSCAN可以在一定的程度上检测出噪声。
    在这里插入图片描述
    第二点强调的是如何能够判定一个簇中含有哪些对象,判定的是寻找核心对象,利用密度可达,来把新的对象加入到某一个簇当中。注意要聚集小簇。
    DBSCAN的计算复杂度为O(n^2),在使用空间索引的数据库
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值