HADOOP HA机制
文章目录
回顾:
今天任务
1.什么是HA
2.HA的实现场景
3.配置HA环境
教学目标
1.理解HA的机制
2.掌握HA环境的配置流程
第一节:HADOOP HA概述
1.1 背景
在Hadoop 2.0.0之前,NameNode是HDFS集群中的单点故障(SPOF)。每个群集都有一个NameNode,如果该机器或进程不可用,整个群集将不可用,直到NameNode重新启动或在单独的计算机上启动为止。这在两个主要方面影响了HDFS集群的总体可用性:
- 在计划外事件(例如机器崩溃)的情况下,直到操作员重新启动NameNode后,群集才可用。
- 计划的维护事件(如NameNode计算机上的软件或硬件升级)将导致群集停机时间窗口。
HDFS高可用性功能通过提供在具有热备用的主动/被动配置中的同一群集中运行两个(以及3.0.0多于两个)冗余NameNode的选项来解决上述问题。这允许在计算机崩溃的情况下快速故障转移到新的NameNode,或者为计划维护目的而进行正常的管理员启动的故障转移。
1.2 HA(High Available)概念
-
hadoop-HA集群运作机制介绍
所谓HA,即高可用(7*24小时不中断服务)(secondarynamenode只是保证了“可靠性”)实现高可用最关键的是消除单点故障,hadoop-ha严格来说应该分成各个组件的HA机制——HDFS的HA、YARN的HA。
-
HDFS的HA机制详解
通过双namenode消除单点故障,双namenode协调工作的要点:
- 元数据管理方式需要改变
- 需要一个状态管理功能模块
第二节 HA集群配置
2.1 基础配置
-
创建7台机器,设置静态ip分别如下:
| 机器名 | ip | | ----------------------------- | -------------- | | CentOs6.4_min_java_hadoop_ha1 | 192.168.18.171 | | CentOs6.4_min_java_hadoop_ha2 | 192.168.18.172 | | CentOs6.4_min_java_hadoop_ha3 | 192.168.18.173 | | CentOs6.4_min_java_hadoop_ha4 | 192.168.18.174 | | CentOs6.4_min_java_hadoop_ha5 | 192.168.18.175 | | CentOs6.4_min_java_hadoop_ha6 | 192.168.18.176 | | CentOs6.4_min_java_hadoop_ha7 | 192.168.18.177 |
-
设置每台机器的hostname
vi /etc/sysconfig/network #编辑network文件,修改内容如下 NETWORKING=yes HOSTNAME=ha1 #分别在7台机器上执行上述命令,使得各台机器的hostname对应关系如下: | 机器名 | hostname | | ----------------------------- | -------- | | CentOs6.4_min_java_hadoop_ha1 | ha1 | | CentOs6.4_min_java_hadoop_ha2 | ha2 | | CentOs6.4_min_java_hadoop_ha3 | ha3 | | CentOs6.4_min_java_hadoop_ha4 | ha4 | | CentOs6.4_min_java_hadoop_ha5 | ha5 | | CentOs6.4_min_java_hadoop_ha6 | ha6 | | CentOs6.4_min_java_hadoop_ha7 | ha7 |
-
修改各个机器的主机名和ip的映射(修改每台机器的hosts文件)
vi /etc/hosts #为hosts文件添加如下内容 192.168.18.171 ha1 192.168.18.172 ha2 192.168.18.173 ha3 192.168.18.174 ha4 192.168.18.175 ha5 192.168.18.176 ha6 192.168.18.177 ha7
-
为每台机器创建一个名为hadoop的用户
useradd hadoop #添加hadoop用户 passwd hadoop #给hadoop用户 设置密码
-
为每台机器的hadoop用户配置sudo权限
vi /etc/sudoers #使用root用户编辑 添加如下内容: hadoop ALL=(ALL) ALL
-
关闭每台机器的防火墙
#查看防火墙状态 service iptables status #关闭防火墙 service iptables stop #查看防火墙开机启动状态 chkconfig iptables --list #关闭防火墙开机启动 chkconfig iptables off
-
每台机器安装JDK
#创建文件夹 mkdir /home/hadoop/develop_env #解压 tar -zxvf jdk-7u55-linux-i586.tar.gz -C /home/hadoop/develop_env
vim /etc/profile #将java添加到环境变量中在文件最后添加
export JAVA_HOME=/home/hadoop/develop_env/jdk1.7.0_65
export PATH=$PATH:$JAVA_HOME/bin
#刷新配置
source /etc/profile
2.2 hadoop配置
- 集群规划
主机名 | 安装的软件 | 运行的进程 |
---|---|---|
ha1 | hadoop | NameNode、DFSZKFailoverController(zkfc) |
ha2 | hadoop | NameNode、DFSZKFailoverController(zkfc) |
Ha3 | hadoop | ResourceManager |
Ha4 | hadoop | ResourceManager |
Ha5 | hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
Ha6 | hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
Ha7 | hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态(激活状态),另一个处于standby状态(后备状态)。ActiveNameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode(jounal 日志)同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当ActiveNameNode挂掉了,会自动切换Standby NameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
-
安装步骤
-
安装配置zooekeeper集群(在ha5上)(更详细zookeeper安装步骤参见zookeeper安装)
1.1解压
#上传zookeeper-3.4.7.tar.gz到/home/hadoop/develop_env tar -zxvf zookeeper-3.4.7.tar.gz -C /home/hadoop/develop_env/
1.2修改配置
cd /home/hadoop/develop_env/zookeeper-3.4.7/conf/ cp zoo_sample.cfg zoo.cfg vi zoo.cfg #修改:dataDir=/home/hadoop/develop_env/zookeeper-3.4.7/data #在最后添加: server.1=ha5:2888:3888 server.2=ha6:2888:3888 server.3=ha7:2888:3888 #然后创建一个data文件夹 mkdir /home/hadoop/develop_env/zookeeper-3.4.7/data echo 1 > /home/hadoop/develop_env/zookeeper-3.4.7/data/myid
1.3将配置好的zookeeper拷贝到其他节点
scp-r /home/hadoop/develop_env/zookeeper-3.4.7/ ha6:/home/hadoop/develop_env/ scp-r /home/hadoop/develop_env/zookeeper-3.4.7/ ha7:/home/hadoop/develop_env/ #注意:修改ha6、ha7对应/hadoop/zookeeper-3.4.5/data/myid内容 #ha6: echo 2 > /home/hadoop/develop_env/zookeeper-3.4.7/data/myid #ha7: echo 3 > /home/hadoop/develop_env/zookeeper-3.4.7/data/myid
-
安装配置hadoop集群(在ha1上操作)
2.1解压
tar -zxvf hadoop-2.7.1.tar.gz
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中 vi /etc/profile export JAVA_HOME=/home/hadoop/develop_env/jdk1.7.0_65 export HADOOP_HOME=/home/hadoop/develop_env/hadoop-2.7.1 export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下 cd /home/hadoop/develop_env/hadoop-2.7.1/etc/hadoop vi hadoo-env.sh #添加如下语句 #export JAVA_HOME=/home/hadoop/develop_env/jdk1.7.0_55
2.2.2修改core-site.xml
<configuration> <!-- 指定hdfs的nameservice为ns1 --> <property> <name>fs.defaultFS</name> <value>hdfs://ns1/</value> </property> <!-- 指定hadoop临时目录 --> <property> <name>hadoop.tmp.dir</name> <value>/home/hadoop/develop_env/hadoop-2.7.1/data</value> </property> <!-- 指定客户端访问zookeeper的地址 --> <property> <name>ha.zookeeper.quorum</name> <value>ha5:2181,ha6:2181,ha7:2181</value> </property> </configuration>
2.2.3修改hdfs-site.xml
<configuration> <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致--> <property> <name>dfs.nameservices</name> <value>ns1</value> </property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 --> <property> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>ha1:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn1</name> <value>ha1:50070</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>ha2:9000</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn2</name> <value>ha2:50070</value> </property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://ha5:8485;ha6:8485;ha7:8485/ns1</value> </property> <!--指定JournalNode在本地磁盘存放数据的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/home/hadoop/develop_env/hadoop-2.7.1/journaldata</value> </property> <!-- 开启NameNode失败自动切换 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失败自动切换实现方式的那个主类 --> <property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!--配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 就是防止脑裂的发生,采用何种方式杀死一个namenode进程--> <property> <name>dfs.ha.fencing.methods</name> <value> sshfence shell(/bin/true) </value> </property> <!-- 使用sshfence隔离机制时需要ssh免登陆--> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> <!--配置sshfence隔离机制超时时间 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property> </configuration>
以上是配置的hdfs的高可用==========
2.2.4修改mapred-site.xml
<configuration> <!--指定mr框架为yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>
2.2.5修改yarn-site.xml
<configuration> <!-- 是否开启RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定yarn的ha的虚拟服务名 类似上面hdfs的hdfs://ns1 --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- yarn的ha虚拟服务名下的具体的rm --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分别指定RM的具体地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>ha3</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>ha4</value> </property> <!-- 分别指定RM1的web ui具体访问地址 --> <property> <name>yarn.resourcemanager.webapp.addresss.rm1</name> <value>ha3:8088</value> </property> <property> <name>yarn.resourcemanager.webapp.addresss.rm2</name> <value>ha4:8088</value> </property> <!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>ha5:2181,ha6:2181,ha7:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>
2.2.6修改slaves(slaves是指定子节点的位置,因为要在ha1上启动HDFS、在ha3启动yarn,所以ha1上的slaves(做苦工的)文件指定的是datanode的位置,ha3上的slaves文件指定的是nodemanager的位置)
ha5
ha6
ha7
2.2.7配置免密码登陆
#首先要配置ha1到ha2、ha3、ha4、ha5、ha6、ha7的免密码登陆 #在ha1上生产一对钥匙 ssh-keygen -t rsa #将公钥拷贝到其他节点,包括自己 ssh-copy-id ha1 ssh-copy-id ha2 ssh-copy-id ha3 ssh-copy-id ha4 ssh-copy-id ha5 ssh-copy-id ha6 ssh-copy-id ha7 #配置ha3到ha4、ha5、ha6、ha7的免密码登陆 #在ha3上生产一对钥匙 ssh-keygen -t rsa #将公钥拷贝到其他节点,包括自己 ssh-copy-id ha3 ssh-copy-id ha4 ssh-copy-id ha5 ssh-copy-id ha6 ssh-copy-id ha7 #注意:两个namenode之间要配置ssh免密码登陆,别忘了配置ha2到ha1的免登陆 在ha2上生产一对钥匙 ssh-keygen -t rsa ssh-coyp-id -i ha1
2.2.8将配置好的hadoop拷贝到其他节点
scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha2:/home/hadoop/develop_env/ scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha3:/home/hadoop/develop_env/ scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha4:/home/hadoop/develop_env/ scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha5:/home/hadoop/develop_env/ scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha6:/home/hadoop/develop_env/ scp -r /home/hadoop/develop_env/hadoop-2.7.1/ ha7:/home/hadoop/develop_env/
-
2.3 HA 启动及测试
注意:严格按照下面的步骤进行启动
-
启动zookeeper集群(分别在ha5、ha6、ha7上启动zk)
cd /home/hadoop/develop_env/zookeeper-3.4.7/bin/ ./zkServer.sh start #查看状态:一个leader,两个follower ./zkServer.sh status
-
启动journalnode(分别在在ha5、ha6、ha7上执行)
cd /home/hadoop/develop_env/hadoop-2.7.1 sbin/hadoop-daemon.sh start journalnode #运行jps命令检验,ha5、ha6、ha7上多了JournalNode进程 #一个命令启动多个journalNode进程 需要测试一下 sbin/hadoop-daemons.sh start journalnode
-
格式化HDFS
#在ha1上执行命令: hdfs namenode -format #格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/home/hadoop/develop_env/hadoop-2.7.1/data,然后将/home/hadoop/develop_env/hadoop-2.7.1/data拷贝到ha2的/home/hadoop/develop_env/hadoop-2.7.1/下。 scp -r /home/hadoop/develop_env/hadoop-2.7.1/data/* ha2:/home/hadoop/develop_env/hadoop-2.7.1/data ##也可以这样,在ha2上执行下面命令 hdfs namenode -bootstrapStandby
-
格式化ZKFC(在ha1上执行即可)
hdfs zkfc -formatZK
-
启动HDFS(在ha1上执行)
sbin/start-dfs.sh
=以上是启动高可用hdfs需要的步骤==========
-
启动YARN在ha3上执行(#####注意#####:是在ha3上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh #此命令只能启动ha3上的resourceManager #而在ha4上的resourceManager需要手动启动一下。 yarn-daemon.sh start resourcemanager #上述两个命令执行完毕后,yarn的ha就启动成功了。其中一个reasourceManager是active一个是standby
到此,hadoop-2.7.1配置完毕,可以统计浏览器访问:http://192.168.18.171:50070>
NameNode’ha1:9000’ (active)
NameNode’ha2:9000’ (standby)
http://192.168.18.173:8088/ 查看yarn集群信息类似
-
验证HDFSHA
#首先向hdfs上传一个文件 hadoopfs -put /etc/profile /profile hadoopfs -ls / #然后再kill掉active的NameNode kill -9 <pid of NN> #通过浏览器访问:http://192.168.18.172:50070 NameNode'ha2:9000' (active) #这个时候ha2上的NameNode变成了active #在执行命令: hadoopfs -ls #-rw-r--r--3 root supergroup 1926 2014-02-06 15:36 /profile
-
上述启动HA的步骤是第一次时需要执行的步骤,下面是非第一次的启动的步骤:
-
启动zookeeper集群(分别在ha5、ha6、ha7上启动zk)
-
启动HDFS(在ha1上执行)
sbin/start-dfs.sh
-
启动YARN在ha3上执行;ha4上的resourceManager需要手动启动
sbin/start-yarn.sh #手动启动那个挂掉的NameNode sbin/hadoop-daemon.sh start namenode #通过浏览器访问:http://192.168.18.171:50070 #NameNode'ha1:9000' (standby) #验证YARN: #运行一下hadoop提供的demo中的WordCount程序: hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /wordcount/input /wordcount/output
-
-
测试集群工作状态的一些指令:
bin/hdfs dfsadmin -report #查看hdfs的各节点状态信息 bin/hdfs haadmin -getServiceState nn1 #获取一个namenode节点的HA状态 sbin/hadoop-daemon.sh start namenode #单独启动一个namenode进程 ./hadoop-daemon.sh start zkfc #单独启动一个zkfc进程