【吴恩达机器学习笔记】第十六章 推荐系统 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十六章 推荐系统16.1 问题规划16.1.1 为什么要将推荐系统**推荐系统(recommender s...
【吴恩达机器学习笔记】第十五 章异常检测 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十五章 异常检测15.1 问题的动机15.1.1 异常检测的例子假设我们是飞机引擎制造商,在引擎制造生产线上...
【吴恩达机器学习笔记】第十四章 降维 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十四章 降维14.1 目标I:数据压缩14.1.1 把数据从二维压缩到一维假设我们收集了一个有很多特征的数据...
【吴恩达机器学习笔记】第十三章 聚类 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十三章 聚类13.1 无监督学习简介13.1.1 监督学习(supervised learning)以下是一...
【吴恩达机器学习笔记】第十二章 支持向量机 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十二章 支持向量机12.1 优化目标12.1.1 逻辑回归回顾为了描述支持向量机(support vecto...
【吴恩达机器学习笔记】第十一章 机器学习系统的设计 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十一章 机器学习系统的设计11.1 确定执行的优先级11.1.1 邮件分类的例子我们以一个垃圾邮件分类器算法...
【吴恩达机器学习笔记】第十章 应用机器学习的建议 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第十章 应用机器学习的建议10.1 决定下一步做什么10.1.1 机器学习中的一些问题在懂机器学习的人当中,依...
【NLP】 一步步理解BERT 一步步理解BERTcsdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners本文转载自CSDN作者财神Childe ,在此对原作者的分享表示感谢!NLPNLP:自然语言处理(NLP)是信息时代最重要的技术之一。理解复杂的语言也是人工智能的重要组成部分。而自google在2018年...
【吴恩达机器学习笔记】第九章 神经网络参数的反向传播算法 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第九章 神经网络参数的反向传播算法9.1 代价函数9.1.1 神经网络在分类中的作用{(x(1),y(1)...
【吴恩达机器学习笔记】第八章 神经网络:表述 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第八章 神经网络:表述8.1 非线性假设8.1.1 机器学习中的例子假设有一个监督学习分类问题,如果使用逻辑...
【论文阅读】SketchML: Accelerating Distributed Machine Learning with Data Sketches 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners论文报告PPT下载方式:可以在我上传的资源中找到报告题目:SketchML: Accelerating Dis...
【吴恩达机器学习笔记】第七章 正则化 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第七章 正则化7.1 过拟合问题7.1.1 什么是过拟合让我们继续使用用线性回归来预测房价的例子来了解什么是过...
【吴恩达机器学习笔记】第六章 逻辑回归 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第六章 逻辑回归6.1 分类问题6.1.1 分类的例子在分类问题中,我们要预测的变量yyy是离散的值,并尝试预...
【深度学习】一文读懂LSTM 一文带你理解LSTM网络csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners本文翻译自Christopher Olah的博客,另外加入了一些自己的理解本文的翻译参考了朱小虎Neil的翻译,链接:https://www.jianshu.com/p/9dc9f41f0b29循...
【吴恩达机器学习笔记】第五章 Octave教程 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第五章 Octave教程5.1 基本操作在Octave中,我们可以使用PS1(’>>’)指令来改变命...
【吴恩达机器学习笔记】第四章 多变量线性回归 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第四章 多变量线性回归4.1 多维特征在之前的章节中,我们学习了单变量线性回归,及模型中只包含一个变量(特征)。但...
【吴恩达机器学习笔记】第三章 线性代数回顾 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多人工智能、机器学习干货csdn:https://blog.csdn.net/qq_36645271github:https://github.com/aimi-cn/AILearners第三章 线性代数回顾3.1 矩阵和向量矩阵(matrix):由数字组成的举行列阵,并写在方括号中。矩阵的维数(dime...
【吴恩达机器学习笔记】第二章 单变量线性回归 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多AI干货github:https://github.com/aimi-cn/AILearners第二章 单变量线性回归2.1 模型表示2.1.1 知识回顾首先,让我们回顾一下什么是监督学习:对于数据集中每个数据来说,我们给出“正确答案”。其中,最常用的监督学习算法解决的两类问题包括:回归问题:使用监督学习...
【吴恩达机器学习笔记】第一章 绪论:初识机器学习 写在前面吴恩达老师(Andrew Ng)的机器学习课程是Coursera上的第一门课程,也是他的经典之作。这门课程从2011年上线到2017年,本门课程已经在全球积累了180万名学员,给许多人工智能入门者提供了全新的学习途径。这门课可以说是通向人工智能的”必经之路“。我身为一名研究NLP方向的研究生,我从刚开始连论文都看不懂到现在对机器学习的原理和其背后的数学含义有一个初步的了解,离不开这门课...