poj 1703

并查集的高级使用

加了一个r【】来判断与根节点的关系

find()

如果 a 和 b 的关系是 r1, b 和 c 的关系是 r2,
       那么 a 和 c 的关系就是 (r1+r2)%2 

Union()

联合时,使得 p[fx] = fy; 同时也要寻找 fx 与 fy 的关系。关系为:(r[x]+r[y]+1)%2
代码如下

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+7;
int p[maxn],r[maxn];  //0表示为1类,1为不同的类
int Find(int x)
{
	if(x==p[x]) return x;
	int t=p[x];
	p[x]=Find(p[x]);
	r[x]=(r[x]+r[t])%2;
	return p[x];
 } 
void Union(int x,int y)
{
	int fx=Find(x);
	int fy=Find(y);
	p[fx]=fy;
	r[fx]=(r[x]+r[y]+1)%2;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		int n,m,a,b;
		char s;
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++){
			p[i]=i; r[i]=0;
		}
		for(int i=0;i<m;i++){
			getchar();
			scanf("%c%d%d",&s,&a,&b);
			if(s=='D'){
				Union(a,b);
			} 
			else if(s=='A'){
				if(Find(a)==Find(b)){
					if(r[a]!=r[b]) printf("In different gangs.\n");
					else  printf("In the same gang.\n");
				}
				else printf("Not sure yet.\n");  
			}
		}
	}
 } 

做完食物链,自己又重新写了一遍

代码如下

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
    int p;
    int r;
}a[100007];
int Find(int x)
{
    if(x==a[x].p) return x;
    int temp=a[x].p;
    a[x].p=Find(temp);
    a[x].r=(a[x].r+a[temp].r)%2;
    return a[x].p;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++){
            a[i].p=i;
            a[i].r=0;
        }
        char s; int A,B;
        for(int i=0;i<m;i++){
            cin>>s;
            scanf("%d%d",&A,&B);
            int root1=Find(A);
            int root2=Find(B);
            if(s=='A') {
                if(root1!=root2) {
                    printf("Not sure yet.\n");
                }
                else{
                    if(a[A].r==a[B].r) {
                        printf("In the same gang.\n");
                    }
                    else{
                        printf("In different gangs.\n");
                    }
                }
            }
            else{
                a[root2].p=root1;
                a[root2].r=(a[A].r+1+a[B].r)%2;
            }
        }
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值