
机器学习
东枫科技
这个作者很懒,什么都没留下…
展开
-
fashion mnist 时装类别识别 BP神经网络 python 机器学习
时装类别识别问题的任务是预测一张图片中的时装类别。时装类别识别问题的数据来自Zalando Research。在时装数据集中,共有60 000张时装的图片。每张图片表示一个28×28的像素灰度矩阵,并且含有一个属于{0,1,2…,9}的标签,用于表明图片中所示的时装类别,时装总共有10种类别:T恤衫、长裤、套头衫、连衣裙、外套、高跟鞋、衬衣、休闲鞋、提包以及靴子,对应的类别号为0~9,下图是...原创 2019-12-26 20:17:32 · 1250 阅读 · 0 评论 -
TF IDF | TF-IDF Python | 调用库实现 | scikit-learn
参考:TF IDF | TF-IDF Python | 自己实现vectorizer = TfidfVectorizer()vectors = vectorizer.fit_transform([documentA, documentB])feature_names = vectorizer.get_feature_names()dense = vectors.todense()dens...原创 2019-12-24 23:41:27 · 762 阅读 · 0 评论 -
TF IDF | TF-IDF Python | 自己实现
导入库import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizer数据documentA = 'the man went out for a walk'documentB = 'the children sat around the fire'分割数据bagOfWordsA = doc...原创 2019-12-24 23:39:29 · 330 阅读 · 1 评论 -
PhotoZoom Pro 8 图片处理工具 入门攻略 | 如何 下载+使用
PhotoZoomPro图片处理工具使用官方网站: https://www.benvista.com/photozoompro当然,你一定要去正版官网下载正版的软件。安装按照流程安装。软件是试用版,正版只能是通过欧元买。界面推荐下载破解版的。放大缩小点这里就可以了。更新: 最新版本的下载地址,我放在了评论区...原创 2019-12-15 20:33:41 · 1671 阅读 · 1 评论 -
如何巧妙配置一个数据科学的环境|适用于:金融,大数据,机器学习
工具1. Anaconda地址:https://www.anaconda.com/distribution/#download-section备注:安装之后,不需要安装其他的任何Python环境。如果有其他的环境,那就删除吧/2. Pycharm地址:https://www.jetbrains.com/pycharm/download/二者的使用场景和区别Pycharm:一般的编程...原创 2019-08-15 20:15:46 · 191 阅读 · 0 评论 -
去除水印-Teorex Inpaint 序列号
Teorex Inpaint 正版序列号 + 注册机 + 破解补丁 最新序列号可在线激活或者用破解补丁任意序列号激活。原创 2019-06-19 23:32:59 · 18678 阅读 · 6 评论 -
MNIST with Keras for Beginners
https://www.kaggle.com/adityaecdrid/mnist-with-keras-for-beginners-99457原创 2019-06-14 01:22:55 · 196 阅读 · 0 评论 -
MNIST 朴素贝叶斯分类器
MNIST朴素贝叶斯分类器import globimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns; sns.set()from sklearn.naive_bayes import GaussianNBfrom sklearn.metrics import...原创 2019-06-14 00:56:40 · 1114 阅读 · 0 评论 -
python 可视化 画图 各大工具库 汇总
seaborn 统计数据可视化https://seaborn.pydata.org/#seaborn-statistical-data-visualizationMatplotlibhttps://matplotlib.org/pyechartshttps://github.com/pyecharts/pyecharts原创 2019-06-14 00:53:05 · 6065 阅读 · 0 评论 -
matlab 图像处理技巧
1、 matlab函数bwareaopen──删除小面积对象格式:BW2 = bwareaopen(BW,P,conn)作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。算法:(1)Determine the connected components.L = bwlabeln(BW, conn);(2)Compute the area of each component....原创 2019-06-13 16:05:46 · 846 阅读 · 0 评论 -
测绘 matlab
没用读取图像文件的imread函数;两幅图像相减imsubtract函数;使用直方图均一化方法增强图像对比度的histeq函数;实现二维自适应噪声消除滤波的wiener2函数等需求1. 把图像都转化到同一个经纬度坐标选一个图片作为参考,提取四个角的经纬度坐标值读取一个目录的所有的图片数据;按照标准图片进行剪裁。...原创 2019-06-13 01:01:15 · 1060 阅读 · 0 评论 -
pd.DataFrame 从创建开始
创建pd.DataFramepd.DataFrame(columns=["地点","经度","纬度","值"])增加一行数据df1.loc[df1.shape[0]+1] = {'地点':"d","经度":22,"纬度":33,"值":21}原创 2019-06-12 15:10:16 · 11241 阅读 · 0 评论 -
from sklearn.grid_search import GridSearchCV 找不到了
问题from sklearn.grid_search import GridSearchCVhttps://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html原因:版本老了 不支持了艹解决from sklearn.model_selection import GridSearch...原创 2019-06-11 18:03:16 · 10907 阅读 · 10 评论 -
from sklearn.cross_validation import train_test_split 找不到了如何解决 将数组或矩阵拆分为随机序列和测试子集
问题from sklearn.cross_validation import train_test_split https://scikit-learn.org/0.16/modules/generated/sklearn.cross_validation.train_test_split.html版本:0.16没有了????解决from sklearn.model_selectio...原创 2019-06-11 17:35:33 · 2009 阅读 · 0 评论 -
国外优秀程序员的个人博客
机器学习的http://www.lauradhamilton.com/原创 2019-06-11 17:20:29 · 3357 阅读 · 1 评论 -
sklearn.decomposition.RandomizedPCA 找不到了 如何解决
新问题的发现sklearn.decomposition.RandomizedPCA 仅仅是0.17的版本的。后续的版本都没有了。http://lijiancheng0614.github.io/scikit-learn/modules/generated/sklearn.decomposition.RandomizedPCA.html解决方法:from sklearn.decomposit...原创 2019-06-11 17:18:16 · 7161 阅读 · 0 评论 -
新项目任务 资源整合
圆拟合与应用OpenCV中实现曲线与圆拟合圆的拟合是基于轮廓发现的结果,对发现的近似圆的轮廓,通过圆拟合可以得到比较好的显示效果,轮廓发现与拟合的API分别为findContours与fitEllipsedef circle_fitness_demo(): src = cv.imread("c2.png") cv.imshow("input", src) src = ...原创 2019-06-11 00:54:34 · 338 阅读 · 0 评论 -
演出会 门票 抢票软件 python 完整版本
代码from selenium import webdriverfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as EC # 期望的条件from selenium.webdriver.common.by im...原创 2019-06-09 14:42:13 · 9696 阅读 · 45 评论 -
MongoDB 配置 安装 命令
牢记的网站http://localhost:27017/可以查看时候服务开启注意事项增加到系统变量里面修改db的位置;命令开启mongo.exe查看dbdbshow dbs开启和关闭net stop "MongoDB Server"net start MongoDB Server连接mongo "mongodb://localhost:27...原创 2019-06-09 14:32:21 · 224 阅读 · 0 评论 -
数据包络分析工具箱 EDA 算法分析
数据包络分析工具箱是MATLAB的新包,包括计算效率和生产率测量的功能。该软件包涵盖了径向,定向,添加,分配,Malmquist和Malmquist-Luenberger配方。地址:http://www.deatoolbox.com/...原创 2019-06-06 15:25:56 · 2715 阅读 · 0 评论 -
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
网上的绝大部分都不一定百分百有效X_train.fillna('100')X_train.dropna(inplace=True,axis=1)原创 2019-05-30 22:37:48 · 416 阅读 · 0 评论 -
Python中使用pickle持久化对象
Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原。pickle.dump(obj, file[, protocol])这是将对象持久化的方法,参数的含义分别为:obj: 要持久化保存的对象;file: 一个拥有 write() 方法的对象,并且这个 write() 方法能接收一个字符串作为参数。这个对象可以是一个以写模式打开的文件对象或者一个...原创 2019-05-30 20:47:33 · 657 阅读 · 0 评论 -
机器学习 入门
机器学习最大的特点是利用数据而不是指令来进行各种工作,其学习过程主要包括:数据的特征提取、数据预处理、训练模型、测试模型、模型评估改进等几部分。二、机器学习算法:机器学习算法可以分为传统的机器学习算法和深度学习。传统机器学习算法主要包括以下五类:回归:建立一个回归方程来预测目标值,用于连续型分布预测分类:给定大量带标签的数据,计算出未知标签样本的标签取值聚类:将不带标签的数据根据距离...原创 2019-05-30 19:40:03 · 2162 阅读 · 0 评论 -
【图论】Python [ numpy, pandas] 实现 基础能力以及基础算法 [ dfs bfs spfa ] 经过较为严格测试
版权copyright :散哥[tjut],程坦[tju]转载请联系;或者有想法的找我要markdown文件。输入有数据文件输入处理部分,有比较清楚的结果输出实现的功能add_node 添加点,remove_node 删除点,add_edge 添加边,remove_edge 删除边,dgree 计算任意点的度,connectivity 计算任意两个点的连通性,distan...原创 2018-12-12 12:10:42 · 983 阅读 · 0 评论 -
Anaconda+tensorflow 安装
为了入门机器学习的小伙伴能安装好工具,特制作此教程按照 Anaconda 下载网站上的说明下载并安装 Anaconda。调用以下命令创建名为 tensorflow 的 conda 环境:conda create -n tensorflow pip python=3.6发出以下命令以激活 conda 环境: “` activate tensorflow4. ...原创 2018-07-26 22:22:45 · 349 阅读 · 0 评论 -
Tensorflow:sess.run():参数 feed_dict等作用
feed_dict参数的作用是替换图中的某个tensor的值。例如:a = tf.add(2, 5)b = tf.multiply(a, 3)with tf.Session() as sess: sess.run(b)21replace_dict = {a: 15}sess.run(b, feed_dict = replace_dict)45 这样做的好处...原创 2018-04-20 13:04:56 · 50815 阅读 · 5 评论 -
Tensorflow 中 python3.6 中 with...as... : 用法的理解
[转载请联系版主]首先看一段代码x = tf.placeholder(tf.float32, shape=(1, 2))w1 = tf.Variable(tf.random_normal([2, 3],stddev=1,seed=1))w2 = tf.Variable(tf.random_normal([3, 1],stddev=1,seed=1))a = tf.matmu...原创 2018-04-20 12:26:28 · 4575 阅读 · 0 评论