算法之路-最长回文子串

本文介绍了寻找字符串中最长回文子串的五种方法,从暴力破解到动态规划,再到中心扩展算法和Manacher算法。详细解析了每种算法的思路、代码实现和性能优化,特别强调了Manacher算法的时间复杂度优势。动态规划和Manacher算法是解决此类问题的关键,适合进一步学习和实践。
摘要由CSDN通过智能技术生成


前言

输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。

一、暴力破解

算法描述:

找到所有子串,判定是否是回文串,保存最长长度的回文串。
在这里插入图片描述

代码实现:

class Solution {
        public static String longestPalindrome(String s) {
        //存储最长子串
        String str = "";
        //存储最长长度
        int longest = 0;
        for (int i = 0; i < s.length(); i++) {
            for (int j = i+1; j < s.length() + 1; j++) {
                String str1 = s.substring(i, j);
                if (isPalindromes(str1) && str1.length()>longest) {
                    str = str1;
                    longest= str.length();
                }
            }
        }
        return str;
    }
 
    public static boolean isPalindromes(String str) {
        if (str.length() == 1) {
            return true;
        }
        for (int i = 0; i < str.length() / 2; i++) {
            if (str.charAt(i) != str.charAt(str.length() - 1 - i)) {
                return false;
            }
        }
        return true;
    }
}

暴力破解能跑通就行,慢慢优化。

二、暴力循环优化版

算法描述:

把s字符串变成chars字符数组,就不用每次都调用substring截取字符串。
第二次循环 j = i + maxLen开始循环就可以了,因为目前最大长度为maxLen,子串小于这个长度就不可能是 最长回文串。
substring() 方法 左闭右开。第二个参数除了用截取最后一个字符下标+1,也可以用开始字符下标+长度。
优化后可以通过力扣。暴力循环是最容易想到的,但也是性能相对较差的一种。

在这里插入图片描述

代码实现:

class Solution {

 public static String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }
        //最大长度
        int maxLen = 0;
        //开始的下标
        int begin = 0;
        //存储s字符数组,就可以不用每次截取字符串比较了。
        char[] chars = s.toCharArray();
        for (int i = 0; i < len - 1; i++) {
            //子串长度比maxLen小,那么他不可能是最长回文子串了。
            for (int j = i + maxLen; j < len; j++) {
                if (isPalindromes(chars,i,j) && j - i + 1 > maxLen){
                    //重新记录最大长度和开始下标
                    maxLen = j-i+1;
                    begin = i;
                }
            }
        }
        //这种第二个参数为开始下标+长度 ,比 结束下标+1 更简单更容易。
        return s.substring(begin,begin+maxLen);
    }
 
    //chars[left]至chars[right]是否是回文串,包括左右下标
    public static boolean isPalindromes(char[] chars, int left, int right) {
        while (left <= right) {
            //不是回文串
            if (chars[left] != chars[right]) {
                return false;
            }
            left++;
            right--;
        }
        return true;
    }
}

三、动态规划

算法描述:

动态规划主要是要找到 动态转移方程 和 边界。
dp[ i ][ j ]表示字符串第 i 个字符到 第 j 个字符 是否是回文串,左闭右闭。
一个回文串,他的首尾加上同样的字符后他依旧是回文串。例如回文串bab,首位加上同样字符a,即ababa,依旧是回文串。
我们可以得出一个状态转移方程: dp[ i ][ j ] = (s[i] == s[j]) and dp[i + 1][j - 1] 。即dp[i + 1][j - 1]是回文串且s[i] 与 s[j]字符相同,那么dp[ i ][ j ] 就是回文串。
动态规划都可以看做填表格,这题表格为:在这里插入图片描述
因为 i <= j,所以这张表我们只需要填右半部分。
边界:因为状态转移方程 dp[ i ][ j ] = (s[i] == s[j]) and dp[i + 1][j - 1] ,所以 i + 1和j - 1 也应该符合 i <= j的条件,代入 i + 1 <= j - 1 ,得 j - i >=2。那么 j - i < 2,即为边界也就是我们不能用状态转移方程求出来。
j - i < 2,意味着dp[ i ][ j ],除去s[i] 、s[j]后,dp[ i ][ j ]只剩下1个或0个元素(一个字符或空字符串)。那么只要s[i] == s[j],dp[ i ][ j ]一定是回文串。(当只有一个字符或空字符串头尾再加上相同字符他一定是回文串)。
为了增加性能,我们可以初始化dp[ i ][ i ]为true,即只有一个字符是一定是回文串。同时 dp[ i ][ j ] = (s[i] == s[j]) and dp[i + 1][j - 1],意味着若s[i] == s[j] ,dp[ i ][ j ]是否是回文串要参考dp[i + 1][j - 1] (j - i < 2不需要直接为true),dp[i + 1][j - 1]在dp[ i ][ j ]的左下方,我们可以竖着填即 j 是大循环,i 为小循环。这样我们每次都可以参考左下方的值。
在这里插入图片描述

代码实现:

class Solution {
 public static String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }
        //最大长度
        int maxLen = 1;
        int begin = 0;
        //存储是否是回文串
        boolean[][] dp = new boolean[len][len];
        char[] chars = s.toCharArray();
        //单个字符一定是回文
        for (int i = 0; i < len; i++) {
            dp[i][i] = true;
        }
 
        for (int j = 1; j < len; j++) {
            for (int i = 0; i < j; i++) {
                if (chars[i] != chars[j]) {
                    dp[i][j] = false;
                } else {
                    //长度为2或3是,肯定是回文。即除去chars[i]和 chars[j]后,只要1个或0个字符。防止出现例如 i=2 j=3情况下 查看dp[3][2]。
                    if (j - i < 2) {
                        dp[i][j] = true;
                    } else {
                        //排除头尾元素后,是否是回文串
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substring(begin, maxLen + begin);
    }
}

示例:abcba
在这里插入图片描述
初始化:单个字符一定是回文串。
j从i开始循环。
j = 1时,chars[i] != chars[j],即头尾字符不相同一定不是回文串,返回false。
j = 2时, i=0和i=1 ,chars[i] != chars[j],均为false。
在这里插入图片描述
j=3时,i=0 chars[i] != chars[j],所以false。
i=1时,dp[i][j] = dp[i + 1][j - 1]成立,参考左下dp[2][2],是回文串。更新最大长度为3和开始下标1。
i=2时 ,chars[i] != chars[j],为flase。
在这里插入图片描述
j=4时,i=0时 chars[i] == chars[j],j - i >=2 ,所以参考左下dp[1][3],dp[1][3]为true则dp[0][4]也为true,更新最大长度为5,开始下标为0。
剩余 i 都是 chars[i] != chars[j],所以都为false。
在这里插入图片描述
动态规划这种思路特别重要,要学会。第一次学习使用动态规划一步一步像解方程一样列出来,理解着解起来。

四、中心扩展

算法描述:

假设每个字符都是回文串最中心的字符,从中心字符向两边扩展,若左右字符不同则他就不会是回文串。
因为回文串长度为奇偶情况不同分辨讨论,每个字符都可能是奇偶长度回文串的中心。当奇数时,只需 i 向两边扩展就可以了。当偶数时,先判断 i ==i+1 字符是否一样,一样则向两边扩展,否则他就不可能是回文串了。
为了方法通用合并被为一种,奇数传入参数 i 和 i,偶数传入参数 i 和 i+1。
这种方法需要左右指针,记录左右字符,方便向两边扩展。
在这里插入图片描述

代码实现:

class Solution {
 public static String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }
        char[] chars = s.toCharArray();
        //最大长度
        int maxLen = 0;
        int begin = 0;
        //char[0] chars[len-1] 时是第一个和最后一个元素,无法左扩展和无法右扩展,排除这俩个元素。
        for (int i = 0; i < len - 1; i++) {
            //回文子串长度为奇数,初始子串为一个字符charAt(i)
            int oddLen = expandAroundCenter(chars, i, i);
            //回文子串长度为偶数,初始子串为charAt(i)和charAt(i+1),i<len-1,i+1不会下标越界
            int evenLen = expandAroundCenter(chars, i, i + 1);
            //取奇偶情况下的当前最长回文子串
            int curMaxLen = Math.max(oddLen, evenLen);
            //比当前存储最长回文子串长,重新存储
            if (curMaxLen > maxLen) {
                // 当回文子串为偶数,一定是i右边多一个字符。
                // 所以左边长度要减1
                // 回文字符串奇数时 int/2取整  -1也不影响结果
                maxLen = curMaxLen;
                begin = i - (maxLen - 1) / 2;
            }
            //优化
            if((len-i-2)*2+1 <maxLen){
                return s.substring(begin, begin + maxLen);
            }
        }
        return s.substring(begin, begin + maxLen);
    }
 
    //计算下标为i时,最长回文子串的长度
    public static int expandAroundCenter(char[] chars, int left, int right) {
        while (left >= 0 && right < chars.length && chars[left] == chars[right]) {
            //是回文串,向外扩展
                left--;
                right++;
        }
        return right - left - 1;
    }
}

字符串最后一个字符,无法向两边扩展,所以排除这个元素,i只到 len-2
示例:ababa

i = 0时,
奇数情况:从i=0,从字符a开始扩展,扩展到 left = -1 、right =1 ,不满足循环条件,返回1-(-1)-1 =1 ,回文子串为a。
偶数情况: 从i=0,i+1=1 开始扩展。因为不满足chars[left] == chars[right] ,没有回文子串,返回 1-0-1 = 0。
目前最大长度为奇数情况下 1。记录最长长度 1 和开始下标 0。

i = 1时,
奇数情况:从i=1,从字符b开始扩展,扩展到 left = -1 、right =3 ,不满足循环条件,返回3-(-1)-1 =3 ,回文子串为aba。
偶数情况: 从i=1,i+1=2 开始扩展。因为不满足chars[left] == chars[right] ,没有回文子串,返回 2-1-1 = 0。
目前最大长度为奇数情况下 3。记录最长长度 3 和开始下标 0。

i = 2时,
奇数情况:从i=2,从字符a开始扩展,扩展到 left = -1 、right =5 ,不满足循环条件,返回5-(-1)-1 =5 ,回文子串为ababa。
偶数情况: 从i=2,i+1=3 开始扩展。因为不满足chars[left] == chars[right] ,没有回文子串,返回 3-2-1 = 0。
目前最大长度为奇数情况下 5。记录最长长度 5 和开始下标 0。

i = 3时,
奇数情况:从i=3,从字符b开始扩展,扩展到 left = 1 、right =5 ,不满足循环条件,返回5- 1-1 =3 ,回文子串为aba。
偶数情况: 从i=3,i+1=4 开始扩展。因为不满足chars[left] == chars[right] ,没有回文子串,返回 4-3-1 = 0。
目前最大长度为奇数情况下 3,小于最长长度5。所以最长长度 5为 和开始下标 0。
再写过程时发现,其实这个例子中,i=3是可以不用循环了。即使i=3处的字符是回文中心,那么他到s的最后一个字符,回文长度也只能是3,他还是小于5。如示例ababa,i=2处 a是回文中心,他长度为5,即使i=3处的b是回文中心,他的子串结尾也只能到字符串s的结尾,长度为3(len-3+1)。他依旧比 i=2处 a是回文中心长度小,所以他就不用循环。

即当 i+1 为回文中心,结尾字符为s字符串的最后一个字符,他的长度为 (len-1-(i+1))*2 +1 。
(len-1-(i+1))*2 +1 < maxlLen 时 i+1以及后面都不用循环了,已经找到最长的回文串了。
这里默认i+1 是奇数回文中心,因为是奇数回文中心,比i+1是偶数回文中心长。

五、Manacher 算法

> 如何找到字符串中的最长回文子串?

算法描述:

我看csdn大佬文章学习的Manacher 算法,感觉比力扣官方写的更加详细也有相应的例子。
这边文章写的已经很详细,明白原理可以自己动手跑一遍。
我感觉Manacher算法,就是用已知最长的回文串,根据回文串特性减少运算。
简单说下要:
字符串 cabadabae
最长回文子串 c | abadaba | e
两种情况,判断看是否需要中心扩展
i = 5时,根据回文串特性,关于 i=4 对称中心,i = 5 和 i = 3一样的回文串,半径为 0。5+0+1 看加上半径后的下一位是否在边界内。在边界范围内,不需要中心扩展。
i = 6时,根据回文串特性,关于 i=4 对称中心,i = 6 和 i = 2一样的回文串,回文子串为aba,半径1。6+1+1 = 8,而i = 8 并不在边界范围内,我们无法根据已知最长回文子串abadaba得到i=8字符是什么,所以需要得到回文子串aba后中心扩展,查看i = 8与 i = 4是否相等,才能判断当前子串是否是回文子串。
对文章的代码做了些细节的改变和注释加了些内容
这里先给出奇数长度字符串的代码,用这个代码跑一边更容易理解,然后再加上#,把所用字符串都处理成奇数长度。

代码实现:

class Solution {
 public static String longestPalindrome(String s) {
        // 处理后的字串长度
        int len = s.length();
        // 右边界
        int rightSide = 0;
        // 右边界对应的回文串中心
        int rightSideCenter = 0;
        // 保存以每个字符为中心的回文半径
        int[] halfLenArr = new int[len];
        // 记录最长回文中心
        int center = 0;
        // 记录最长回文半径
        int longestHalf = 0;
        for (int i = 0; i < len; i++) {
            // 是否需要中心扩展
            boolean needCalc = true;
            // 如果在右边界的覆盖之内,可以用回文特性
            if (rightSide > i) {
                // 计算相对rightSideCenter的对称位置
                int leftCenter = rightSideCenter - (i - rightSideCenter);
                // 根据回文性质得到的结论
                halfLenArr[i] = halfLenArr[leftCenter];
                // 如果超过了右边界,进行调整
                if (i + halfLenArr[i] > rightSide) {
                    halfLenArr[i] = rightSide - i;
                }
                // 如果根据已知条件计算得出的最长回文小于右边界,则不需要扩展了。得到的回文再边界范围内
                if (i + halfLenArr[leftCenter] < rightSide) {
                    // 直接推出结论
                    needCalc = false;
                }
            }
            // 中心扩展
            if (needCalc) {
                while (i - 1 - halfLenArr[i] >= 0 && i + 1 + halfLenArr[i] < len) {
                    if (s.charAt(i + halfLenArr[i] + 1) == s.charAt(i - halfLenArr[i] - 1)) {
                        halfLenArr[i]++;
                    } else {
                        break;
                    }
                }
                // 更新右边界及中心
                rightSide = i + halfLenArr[i];
                rightSideCenter = i;
                // 记录最长回文串
                if (halfLenArr[i] > longestHalf) {
                    center = i;
                    longestHalf = halfLenArr[i];
                }
            }
        }
        String substring = s.substring(center - longestHalf, center + longestHalf + 1);
        return substring;
    }
}

加#处理后的代码:
在这里插入图片描述

代码实现:

class Solution {
 public static String longestPalindrome(String s) {
      // 先预处理字符串
        String str = preHandleString(s);
        // 处理后的字串长度
        int len = str.length();
        // 右边界
        int rightSide = 0;
        // 右边界对应的回文串中心
        int rightSideCenter = 0;
        // 保存以每个字符为中心的回文半径
        int[] halfLenArr = new int[len];
        // 记录最长回文中心
        int center = 0;
        // 记录最长回文半径
        int longestHalf = 0;
        for (int i = 0; i < len; i++) {
            // 是否需要中心扩展
            boolean needCalc = true;
            // 如果在右边界的覆盖之内,可以用回文特性
            if (rightSide > i) {
                // 计算相对rightSideCenter的对称位置
                int leftCenter = rightSideCenter - (i - rightSideCenter);
                // 根据回文性质得到的结论
                halfLenArr[i] = halfLenArr[leftCenter];
                // 如果超过了右边界,进行调整
                if (i + halfLenArr[i] > rightSide) {
                    halfLenArr[i] = rightSide - i;
                }
                // 如果根据已知条件计算得出的最长回文小于右边界,则不需要扩展了。得到的回文再边界范围内
                if (i + halfLenArr[leftCenter] < rightSide) {
                    // 直接推出结论
                    needCalc = false;
                }
            }
            // 中心扩展
            if (needCalc) {
                while (i - 1 - halfLenArr[i] >= 0 && i + 1 + halfLenArr[i] < len) {
                    if (str.charAt(i + halfLenArr[i] + 1) == str.charAt(i - halfLenArr[i] - 1)) {
                        halfLenArr[i]++;
                    } else {
                        break;
                    }
                }
                // 更新右边界及中心
                rightSide = i + halfLenArr[i];
                rightSideCenter = i;
                // 记录最长回文串
                if (halfLenArr[i] > longestHalf) {
                    center = i;
                    longestHalf = halfLenArr[i];
                }
            }
        }
        // 去掉之前添加的#
        StringBuffer sb = new StringBuffer();
        for(int i = center - longestHalf + 1; i <= center + longestHalf; i += 2) {
            sb.append(str.charAt(i));
        }
        return sb.toString();

    }

    public static String preHandleString(String s) {
        StringBuffer sb = new StringBuffer();
        int len = s.length();
        sb.append('#');
        for (int i = 0; i < len; i++) {
            sb.append(s.charAt(i));
            sb.append('#');
        }
        return sb.toString();
    }
}

自己看明白原理,看代码却看不懂,跑了一遍豁然开朗,自己实践中也遇到不少的坑,慢慢的看着补知识吧。

总结

动态规划的思想(要找到状态转移方程和边界条件)
找回文串常用方法中心扩展
substring(),不要总参与循环,可以把字符串变成字符数组,左右指针参与循环。找到结果后在用substring()取得子串。
Manacher(马拉车),找最长回文串的最优方法,时间复杂度只为O(n),局限这种思路用于找到最长的回文子串,不像动态规划、中心扩展可以用在其他题目中。

新的算法知识,让菜鸡的我更加怀疑人生。最近的工作很忙,才入职新的公司,低代码的前端让我后端小菜鸡弄,痛苦。尽管痛苦但我依然会保证每月至少有更新,谢谢各位大佬的浏览,顺手帮菜鸡点个赞吧。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值