一、前提
官网代码:https://github.com/tensorflow/models/tree/master/research/deeplab
1. 依赖
DeepLab依赖于以下库:
- Numpy
- Pillow 1.0
- tf Slim (which is included in the "tensorflow/models/research/" checkout)
- Jupyter notebook
- Matplotlib
- Tensorflow1.6及以上
2. 将库添加到PYTHONPATH
在本地运行时,tensorflow / models / research /和slim目录应该附加到PYTHONPATH。 这可以通过在 tensorflow / models / research /路径下运行以下命令来完成:
# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
注意:每次启用新终端,此命令都需要运行。 如果想避免手动运行,可以将其作为新行添加到〜/ .bashrc文件的末尾。
3. 简单测试
可以通过运行以下命令来测试是否已成功安装 Tensorflow DeepLab:
运行 model_test.py 进行快速测试:
# From tensorflow/models/research/
python deeplab/model_test.py
在PASCAL VOC 2012数据集上快速运行整个代码:
# From tensorflow/models/research/deeplab
sh local_test.sh
local_test.sh 脚本用于在PASCAL VOC 2012上运行本地测试。
之后在自己数据集上进行训练等操作就可以参照 local_test.sh 来编辑指令。打开脚本看一下,发现它:
(1)执行了model_test.py
(2)执行了download_and_convert_voc2012.sh
(3)从model_zoo(http://download.tensorflow.org/models)下载了模型deeplabv3_pascal_train_aug
(4)执行了train.py
(5)执行了eval.py
(6)执行了vis.py
(7)执行了export_model.py
建议仔细阅读上面提到的脚本和程序,为以后训练自己的数据提供参考。
错误1:
运行 model_test.py 进行快速测试时出错:
参考 https://github.com/tensorflow/models/issues/5523
将 model_test.py 中140行左右的:
self.assertListEqual(scales_to_model_results.keys(),
修改为:
self.assertListEqual(list(scales_to_model_results.keys()),
错误2:
测试程序需要运行eval.py,我在这里出现了一个错误:
即:InvalidArgumentError (see above for traceback): assertion failed: [`predictions` out of bound] [Condition x < y did not hold element-wise:] [x (mean_iou/confusion_matrix/control_dependency_1:0) = ] [0 0 0...] [y (mean_iou/ToInt64_2:0) = ] [21]
参考https://github.com/tensorflow/models/issues/4203中trobr的说法:
修改 eval.py 中第145 行左右:
将:
metric_map = {}
metric_map[predictions_tag] = t