DeepLab V3+ 训练自己的数据

本文档详细介绍了如何使用DeepLab V3+进行自定义数据集的训练,包括环境配置、数据准备、训练前的修改、训练过程、验证、可视化和模型导出等步骤。在训练前,确保所有依赖库正确安装,数据转换成tfrecord格式,同时解决训练过程中可能遇到的问题,如数据不平衡。训练完成后,通过可视化工具查看分割结果。
摘要由CSDN通过智能技术生成

一、前提

官网代码:https://github.com/tensorflow/models/tree/master/research/deeplab 

1. 依赖

DeepLab依赖于以下库:

  • Numpy
  • Pillow 1.0
  • tf Slim (which is included in the "tensorflow/models/research/" checkout)
  • Jupyter notebook
  • Matplotlib
  • Tensorflow1.6及以上

2. 将库添加到PYTHONPATH

在本地运行时,tensorflow / models / research /和slim目录应该附加到PYTHONPATH。 这可以通过在 tensorflow / models / research /路径下运行以下命令来完成:

# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

注意:每次启用新终端,此命令都需要运行。 如果想避免手动运行,可以将其作为新行添加到〜/ .bashrc文件的末尾。

3. 简单测试

可以通过运行以下命令来测试是否已成功安装 Tensorflow DeepLab:

运行 model_test.py 进行快速测试:

# From tensorflow/models/research/
python deeplab/model_test.py

在PASCAL VOC 2012数据集上快速运行整个代码:

# From tensorflow/models/research/deeplab
sh local_test.sh

local_test.sh 脚本用于在PASCAL VOC 2012上运行本地测试。

之后在自己数据集上进行训练等操作就可以参照 local_test.sh 来编辑指令。打开脚本看一下,发现它:

(1)执行了model_test.py

(2)执行了download_and_convert_voc2012.sh

(3)从model_zoo(http://download.tensorflow.org/models)下载了模型deeplabv3_pascal_train_aug

(4)执行了train.py

(5)执行了eval.py

(6)执行了vis.py

(7)执行了export_model.py

建议仔细阅读上面提到的脚本和程序,为以后训练自己的数据提供参考。

错误1:

运行 model_test.py 进行快速测试时出错:

参考 https://github.com/tensorflow/models/issues/5523

 将 model_test.py 中140行左右的:

self.assertListEqual(scales_to_model_results.keys(),

修改为:

self.assertListEqual(list(scales_to_model_results.keys()),

错误2:

测试程序需要运行eval.py,我在这里出现了一个错误:

即:InvalidArgumentError (see above for traceback): assertion failed: [`predictions` out of bound] [Condition x < y did not hold element-wise:] [x (mean_iou/confusion_matrix/control_dependency_1:0) = ] [0 0 0...] [y (mean_iou/ToInt64_2:0) = ] [21]

参考https://github.com/tensorflow/models/issues/4203中trobr的说法:

修改 eval.py 中第145 行左右:

将:

metric_map = {}

metric_map[predictions_tag] = t
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值