二叉树的定义
二叉树(binary tree)由结点的有限集合构成,这个有限集合或者为空集(empty),或者为由一个根结点(root)及两棵互不相交、分别称作这个根的左子树(left subtree)和右子树(right subtree)的二叉树组成的集合。
二叉树的五种基本形态
二叉树相关术语
p二叉树是由唯一的起始结点引出的结点集合。这个起始结点称为根(root)
p二叉树中的任何非根结点都有且仅有一个前驱结点,称之为该结点的父结点(或称为双亲,parent)。根结点即为二叉树中唯一没有父结点的结点
p二叉树中的任何结点最多可能有两个后继结点,分别称为左子结点(或左孩子、左子女,left child)和右子结点(或右孩子,右子女,right child),具有相同父结点的结点之间互称兄弟结点(sibling)
p二叉树中结点的子树数目称为结点的度(degree)。
p没有子结点的结点称为叶结点 (leaf,也称“树叶”或“终端结点”),叶结点的度为0。
p除叶结点以外的那些非终端结点称为内部结点(或分支结点,internal node)
p父结点k与子结点k’之间存在一条有向连线<k, k’>,称作边(edge)
p若二叉树中存在结点序列{k0,k1,…,ks},使得<k0,k1>,< k1,k2>,…,< ks-1,ks>都是二叉树中的边,则称从结点k0到结点ks存在一条路径(path),该路径所经历的边的个数称为这条路径的路径长度(path length)。若有一条由 k到达ks的路径,则称k是ks的祖先(ancestor),ks是k的子孙(descendant)
p断掉一个结点与其父结点的连接,则该结点与其子孙构成的树就称为以该结点为根的子树(subtree)
p从根结点到某个结点的路径长度称为结点的层数(level),根结点为第0层,非根结点的层数是其父结点的层数加1
p二叉树是由唯一的起始结点引出的结点集合。这个起始结点称为根(root)
p二叉树中的任何非根结点都有且仅有一个前驱结点,称之为该结点的父结点(或称为双亲,parent)。根结点即为二叉树中唯一没有父结点的结点
p二叉树中的任何结点最多可能有两个后继结点,分别称为左子结点(或左孩子、左子女,left child)和右子结点(或右孩子,右子女,right child),具有相同父结点的结点之间互称兄弟结点(sibling)
p二叉树中结点的子树数目称为结点的度(degree)。
p没有子结点的结点称为叶结点 (leaf,也称“树叶”或“终端结点”),叶结点的度为0。
p除叶结点以外的那些非终端结点称为内部结点(或分支结点,internal node)
p父结点k与子结点k’之间存在一条有向连线<k, k’>,称作边(edge)
p若二叉树中存在结点序列{k0,k1,…,ks},使得<k0,k1>,< k1,k2>,…,< ks-1,ks>都是二叉树中的边,则称从结点k0到结点ks存在一条路径(path),该路径所经历的边的个数称为这条路径的路径长度(path length)。若有一条由 k到达ks的路径,则称k是ks的祖先(ancestor),ks是k的子孙(descendant)
p断掉一个结点与其父结点的连接,则该结点与其子孙构成的树就称为以该结点为根的子树(subtree)
p从根结点到某个结点的路径长度称为结点的层数(level),根结点为第0层,非根结点的层数是其父结点的层数加1
数组实现二叉树
课程要求:完成树的基本操作
1、树的创建和销毁
2、树中结点的搜索
3、树中结点的添加和删除
4、树中结点的遍历
Tree(int size, int* pRoot); //创建树
~Tree(); //销毁树
int* SearchNode(int nodeindex); //根据索引寻找结点
bool AddNode(int nodeindex, int direction, int* pNode); //添加结点
bool DeleteNode(int nodeindex, int* pNode); //删除结点
void TreeTraverse(); //遍历结点
关于数组与树之间的算法转换
int tree[n] 3 5 8 2 6 9 7 父亲结点下标*2 + 1 = 该结点左孩子
父亲结点下标*2 + 2 = 该结点右孩子
3(0)
5(1) 8(2)
2(3) 6(4) 9(5) 7(6)
课程要求:完成树的基本操作
1、树的创建和销毁
2、树中结点的搜索
3、树中结点的添加和删除
4、树中结点的遍历
Tree(int size, int* pRoot); //创建树
~Tree(); //销毁树
int* SearchNode(int nodeindex); //根据索引寻找结点
bool AddNode(int nodeindex, int direction, int* pNode); //添加结点
bool DeleteNode(int nodeindex, int* pNode); //删除结点
void TreeTraverse(); //遍历结点
关于数组与树之间的算法转换
int tree[n] 3 5 8 2 6 9 7 父亲结点下标*2 + 1 = 该结点左孩子
父亲结点下标*2 + 2 = 该结点右孩子
3(0)
5(1) 8(2)
2(3) 6(4) 9(5) 7(6)