试题库问题
题目描述:
假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
编程任务:
对于给定的组卷要求,计算满足要求的组卷方案。
输入格式:
第1行有2个正整数k和n (2 <=k<= 20, k<=n<= 1000)
k 表示题库中试题类型总数,n 表示题库中试题总数。第2 行有k 个正整数,第i 个正整数表示要选出的类型i的题数。这k个数相加就是要选出的总题数m。接下来的n行给出了题库中每个试题的类型信息。每行的第1 个正整数p表明该题可以属于p类,接着的p个数是该题所属的类型号。
输出格式
:
第i 行输出 “i:”后接类型i的题号。如果有多个满足要求的方案,只要输出1个方案。如果问题无解,则输出“No Solution!”。
输入样例1:
3 15
3 3 4
2 1 2
1 3
1 3
1 3
1 3
3 1 2 3
2 2 3
2 1 3
1 2
1 2
2 1 2
2 1 3
2 1 2
1 1
3 1 2 3
输出样例1:
1: 1 6 8
2: 7 9 10
3: 2 3 4 5
题解:
比较水的网络流的题了,根据题目要求,每个题最多选一次,那么把每个题和t(或s)点连一条容量为1的边,每个库和s点连一条容量为所需试题数目的边,跑最大流。如果最大流跑出来的最大流量刚好为所有试题数目总和,就代表有可行的方案,输出方案即可(好像就输出方案比较麻烦)。
需要注意的是因为网络流要双向连边,所以在输出时会输出s或t点,需要加上特判(已经好几次在这wa了)。
建图如图:
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int max_m = 22001;
const int max_n = 1021;
int point[max_n],nxt[max_m],v[max_m],remain[max_m],val[max_n];
int deep[max_n],cur[max_n];
int n,k,s,t,tot,inf=1e9,x,maxn;
inline void clear()
{
memset(point,-1,sizeof(point));
memset(nxt,-1,sizeof(nxt));
tot=-1;
}
inline void addedge(int x,int y,int val)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=val;
++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0;
}
inline bool bfs(int s,int t)
{
memset(deep,0x7f,sizeof(deep));
for(int i=s; i<=t; ++i)
cur[i]=point[i];
queue<int> q;
deep[s]=0;
q.push(s);
while(!q.empty())
{
int now=q.front();q.pop();
for(int i=point[now]; i!=-1; i=nxt[i])
if(deep[v[i]]>inf && remain[i])
{
deep[v[i]]=deep[now]+1;
q.push(v[i]);
}
}
return deep[t]<inf;
}
inline int dfs(int now,int t,int limit)
{
if(!limit || now==t) return limit;
int flow=0,f;
for(int i=cur[now]; i!=-1; i=nxt[i])
{
cur[now]=i;
if(deep[v[i]]==deep[now]+1 && (f=dfs(v[i],t,min(limit,remain[i]))))
{
flow+=f;
limit-=f;
remain[i]-=f;
remain[i^1]+=f;
if(!limit) break;
}
}
return flow;
}
inline int dinic(int s,int t)
{
int ans=0;
while(bfs(s,t))
ans+=dfs(s,t,inf);
return ans;
}
inline void output()
{
int ans=dinic(s,t);
if(ans!=maxn)
printf("No Solution!");
else
{
for(int i=1; i<=k; ++i)
{
printf("%d: ",i);
for(int j=point[i]; j!=-1; j=nxt[j])
if(!remain[j] && v[j]!=s && v[j]!=t) printf("%d ",v[j]-k);
printf("\n");
}
}
}
int main()
{
clear();
scanf("%d%d",&k,&n);
s=0; t=n+k+1;
for(int i=1; i<=k; ++i)
{
scanf("%d",&val[i]);
maxn+=val[i];
addedge(s,i,val[i]);
}
for(int i=1; i<=n; ++i)
addedge(i+k,t,1);
for(int i=1; i<=n; ++i)
{
int f;
scanf("%d",&f);
for(int j=1; j<=f; ++j)
{
scanf("%d",&x);//将连通的类型和试题连边
addedge(x,i+k,1);
}
}
output();
return 0;
}