[网络流24题]试题库问题

试题库问题

题目描述:

假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
编程任务:
对于给定的组卷要求,计算满足要求的组卷方案。

输入格式:
第1行有2个正整数k和n (2 <=k<= 20, k<=n<= 1000)
k 表示题库中试题类型总数,n 表示题库中试题总数。第2 行有k 个正整数,第i 个正整数表示要选出的类型i的题数。这k个数相加就是要选出的总题数m。接下来的n行给出了题库中每个试题的类型信息。每行的第1 个正整数p表明该题可以属于p类,接着的p个数是该题所属的类型号。

输出格式
第i 行输出 “i:”后接类型i的题号。如果有多个满足要求的方案,只要输出1个方案。如果问题无解,则输出“No Solution!”。

输入样例1:
3 15
3 3 4
2 1 2
1 3
1 3
1 3
1 3
3 1 2 3
2 2 3
2 1 3
1 2
1 2
2 1 2
2 1 3
2 1 2
1 1
3 1 2 3

输出样例1:
1: 1 6 8
2: 7 9 10
3: 2 3 4 5

题解:
比较水的网络流的题了,根据题目要求,每个题最多选一次,那么把每个题和t(或s)点连一条容量为1的边,每个库和s点连一条容量为所需试题数目的边,跑最大流。如果最大流跑出来的最大流量刚好为所有试题数目总和,就代表有可行的方案,输出方案即可(好像就输出方案比较麻烦)。
需要注意的是因为网络流要双向连边,所以在输出时会输出s或t点,需要加上特判(已经好几次在这wa了)。
建图如图:


代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;

const int max_m = 22001;
const int max_n = 1021;

int point[max_n],nxt[max_m],v[max_m],remain[max_m],val[max_n];
int deep[max_n],cur[max_n];
int n,k,s,t,tot,inf=1e9,x,maxn;

inline void clear()
{
	memset(point,-1,sizeof(point));
	memset(nxt,-1,sizeof(nxt));
	tot=-1;
}

inline void addedge(int x,int y,int val)
{
	++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=val;
	++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0;
}

inline bool bfs(int s,int t)
{
	memset(deep,0x7f,sizeof(deep));
	
	for(int i=s; i<=t; ++i)
	  cur[i]=point[i];
	  
	queue<int> q;
	deep[s]=0;
	q.push(s);
	
	while(!q.empty())
	{
		int now=q.front();q.pop();
		for(int i=point[now]; i!=-1; i=nxt[i])
		  if(deep[v[i]]>inf && remain[i])
		  {
		  	deep[v[i]]=deep[now]+1;
		  	q.push(v[i]);
		  }
	}
	
	return deep[t]<inf;
}

inline int dfs(int now,int t,int limit)
{
	if(!limit || now==t) return limit;
	int flow=0,f;
	
	for(int i=cur[now]; i!=-1; i=nxt[i])
	{
		cur[now]=i;
		if(deep[v[i]]==deep[now]+1 && (f=dfs(v[i],t,min(limit,remain[i]))))
		{
			flow+=f;
			limit-=f;
			remain[i]-=f;
			remain[i^1]+=f;
			if(!limit) break;
		}
	}
	
	return flow;
}

inline int dinic(int s,int t)
{
	int ans=0;
	
	while(bfs(s,t))
	  ans+=dfs(s,t,inf);
	  
	return ans;
}

inline void output()
{
	int ans=dinic(s,t);
	if(ans!=maxn)
	  printf("No Solution!");
	else
	{
		for(int i=1; i<=k; ++i)
		{
			printf("%d: ",i);
			for(int j=point[i]; j!=-1; j=nxt[j])
			  if(!remain[j] && v[j]!=s && v[j]!=t) printf("%d ",v[j]-k);
			printf("\n");
		}
	}
}

int main()
{
	clear();
	scanf("%d%d",&k,&n);
	s=0; t=n+k+1;
	
	for(int i=1; i<=k; ++i)
	{
		scanf("%d",&val[i]);
		maxn+=val[i];
		addedge(s,i,val[i]);
	}
	
	
	for(int i=1; i<=n; ++i)
	  addedge(i+k,t,1);
	
	for(int i=1; i<=n; ++i)
	{
		int f;
		scanf("%d",&f);
		
		for(int j=1; j<=f; ++j)
		{
			scanf("%d",&x);//将连通的类型和试题连边 
			addedge(x,i+k,1);
		}
	}
	
	output();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值