*LeetCode 300 最长上升子序列(中等)

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

思路与代码

动态规划

dp[i] 代表以下标i结尾的最长上升子序列大小(最长子序列必须以nums[i]结尾)。

时间复杂度 O(n²)
空间复杂度 O(n)

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp = new int[nums.length];
        Arrays.fill(dp, 1);
        int res = 0;
        for (int i = 0; i < nums.length; i++) {
            for (int j = i - 1; j >= 0; j--) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

贪心+二分查找
来自LeetCode 作者 :coldme

很具小巧思。新建数组 tail,用于保存最长上升子序列。

对原序列进行遍历,将每位元素二分插入 cell 中。

  • 如果 tail中元素都比它小,将它插到最后
  • 否则,用它覆盖掉比它大的元素中最小的那个。

时间复杂度 O(n)
空间复杂度 O(n)

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] tails = new int[nums.length];

        int res = 0;
        for (int num : nums) {
            int i = 0;
            int j = res;
            while (i < j) {
                int m = (j - i) / 2 + i;
                if (num <= tails[m]) j = m;
                else i = m + 1;
            }
            tails[j] = num;
            if (j == res) res++;
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值