题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m].请问k[0]k[1]…*k[m]可能的最大乘积是多少?
这道题在想不到合适的贪心策略的情况下 可以用动态规划解出来
问题可以分解成若干个子问题,最优解依赖于各个子问题,子问题之间相互重叠
/**
* 剪绳子的问题
*/
public class 剪绳子 {
public static void main(String[] args) {
int i = cutCount2(10);
System.out.println(i);
}
public static int cutCount(int len) {
//规定三种基本类型剪切的时候发生的情况
if (len == 0) return 0;
if (len == 1) return 0;
if (len == 2) return 1;
if (len == 3) return 2;
//初始化长度数组 , 第i个元素代表i长度的绳子剪切乘积的最大值(用于存储动态规划中的子问题)
int[] arr = new int[len + 1];
arr[0] = 0;
arr[1] = 1;
arr[2] = 2;
arr[3] = 3; //以上是对应长度的最佳切分点 到这几个点以后不再往下切分
for (int i = 4; i <= len; i++) {//第一层遍历拿到要切分的绳子的长度
int max = 0;
for (int j = 1; j <= i / 2; j++) {//第二次遍历 求出对应i长度的最大值
int num = arr[j] * arr[i - j];
if (num > max) max = num;
arr[i] = max;
}
}
return arr[len];
}
//贪心策略
public static int cutCount2(int len) {
//规定三种基本类型剪切的时候发生的情况
if (len == 0) return 0;
if (len == 1) return 0;
if (len == 2) return 1;
if (len == 3) return 2;
int timeofthree = len / 3;
if (len - timeofthree * 3 == 1) timeofthree--;
int timeofTwo = (len-timeofthree*3)/2;
return (int)(Math.pow(3,timeofthree)* Math.pow(2,timeofTwo));
}
}