剑指offer第二版 14剪绳子问题(你能懂)

题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m].请问k[0]k[1]…*k[m]可能的最大乘积是多少?

这道题在想不到合适的贪心策略的情况下 可以用动态规划解出来
问题可以分解成若干个子问题,最优解依赖于各个子问题,子问题之间相互重叠

/**
 * 剪绳子的问题
 */
public class 剪绳子 {

    public static void main(String[] args) {
        int i = cutCount2(10);

        System.out.println(i);
    }


    public static int cutCount(int len) {

        //规定三种基本类型剪切的时候发生的情况
        if (len == 0) return 0;
        if (len == 1) return 0;
        if (len == 2) return 1;
        if (len == 3) return 2;

        //初始化长度数组 , 第i个元素代表i长度的绳子剪切乘积的最大值(用于存储动态规划中的子问题)
        int[] arr = new int[len + 1];

        arr[0] = 0;
        arr[1] = 1;
        arr[2] = 2;
        arr[3] = 3;  //以上是对应长度的最佳切分点 到这几个点以后不再往下切分

        for (int i = 4; i <= len; i++) {//第一层遍历拿到要切分的绳子的长度
            int max = 0;
            for (int j = 1; j <= i / 2; j++) {//第二次遍历 求出对应i长度的最大值
                int num = arr[j] * arr[i - j];
                if (num > max) max = num;
                arr[i] = max;
            }
        }
        return arr[len];
    }

    //贪心策略
    public static int cutCount2(int len) {

        //规定三种基本类型剪切的时候发生的情况
        if (len == 0) return 0;
        if (len == 1) return 0;
        if (len == 2) return 1;
        if (len == 3) return 2;

        int timeofthree = len / 3;
        if (len - timeofthree * 3 == 1) timeofthree--;

        int timeofTwo = (len-timeofthree*3)/2;

        return (int)(Math.pow(3,timeofthree)* Math.pow(2,timeofTwo));

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值