机器学习界有一群炼丹师,他们每天的日常是:
拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了。
不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了,这出来的口味可是千差万别。火小了夹生,火大了易糊,火不匀则半生半糊。
机器学习也是一样,模型优化算法的选择直接关系到最终模型的性能。有时候效果不好,未必是特征的问题或者模型设计的问题,很可能就是优化算法的问题。
说到优化算法,入门级必从SGD学起,老司机则会告诉你更好的还有AdaGrad/AdaDelta,或者直接无脑用Adam。可是看看学术界的最新paper,却发现一众大神还在用着入门级的SGD,最多加个Moment或者Nesterov ,还经常会黑一下Adam。
深度学习优化算法经历了 SGD -> SGDM -> NAG ->AdaGrad -> AdaDelta -> Adam -> Nadam 这样的发展历程。Google一下就可以看到很多的教程文章,详细告诉你这些算法是如何一步一步演变而来的。在这里,我们换一个思路,用一个框架来梳理所有的优化算法,做一个更加高屋建瓴的对比。
先来看SGD。SGD没有动量的概念,也就是说:
代入步骤3,可以看到下降梯度就是最简单的
神经网络的学习的目标是找到损失函数的值尽可能小的参数,这是寻找最优参数的问题,解决该问题的过程称为最优化。
参考文献:https://shuokay.com/2016/06/11/optimization/
SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。
1.随机梯度下降算法 SGD算法
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
其中,η是学习率,gt是梯度。
torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float) – 学习率
momentum (float, 可选) – 动量因子(默认:0)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认:0)
dampening (float, 可选) – 动量的抑制因子(默认:0)
nesterov (bool, 可选) – 使用Nesterov动量(默认:False)
SGD:
- 实现 SGD 优化算法
- 带动量 SGD 优化算法
- 带 NAG(Nesterov accelerated gradient)动量 SGD 优化算法
并且均可拥有 weight_decay 项。
优缺点:
SGD完全依赖于当前batch的梯度,所以η可理解为允许当前batch的梯度多大程度影响参数更新。对所有的参数更新使用同样的learning rate,选择合适的learning rate比较困难,容易收敛到局部最优。
2.平均随机梯度下降算法 ASGD算法
ASGD 就是用空间换时间的一种 SGD。
torch.optim.ASGD(params, lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:1e-2)
lambd (float, 可选) – 衰减项(默认:1e-4)
alpha (float, 可选) – eta更新的指数(默认:0.75)
t0 (float, 可选) – 指明在哪一次开始平均化(默认:1e6)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
3.Adagrad算法
AdaGrad算法就是将每一个参数的每一次迭代的梯度取平方累加后在开方,用全局学习率除以这个数,作为学习率的动态更新。
其中,r为梯度累积变量,r的初始值为0。ε为全局学习率,需要自己设置。δ为小常数,为了数值稳定大约设置为10−7
torch.optim.Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认: 1e-2)
lr_decay (float, 可选) – 学习率衰减(默认: 0)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
优缺点:
Adagrad 是一种自适应优化方法,是自适应的为各个参数分配不同的学习率。这个学习率的变化,会受到梯度的大小和迭代次数的影响。梯度越大,学习率越小;梯度越小,学习率越大。缺点是训练后期,学习率过小,因为 Adagrad 累加之前所有的梯度平方作为分母。随着算法不断迭代,r会越来越大,整体的学习率会越来越小。所以,一般来说AdaGrad算法一开始是激励收敛,到了后面就慢慢变成惩罚收敛,速度越来越慢。
4.自适应学习率调整 Adadelta算法
Adadelta是对Adagrad的扩展,但是进行了计算上的简化。
Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。
torch.optim.Adadelta(params, lr=1.0, rho=0.9, eps=1e-06, weight_decay=0)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
rho (float, 可选) – 用于计算平方梯度的运行平均值的系数(默认:0.9)
eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-6)
lr (float, 可选) – 在delta被应用到参数更新之前对它缩放的系数(默认:1.0)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
优缺点:
Adadelta已经不依赖于全局学习率。训练初中期
,加速效果不错,很快
,训练后期
,反复在局部最小值附近抖动
。
5.RMSprop算法
RMSprop 和 Adadelta 一样,也是对 Adagrad 的一种改进。 RMSprop 采用均方根
作为分母,可缓解 Adagrad 学习率下降较快的问题, 并且引入均方根,可以减少摆动
。
torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:1e-2)
momentum (float, 可选) – 动量因子(默认:0)
alpha (float, 可选) – 平滑常数(默认:0.99)
eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-8)
centered (bool, 可选)
– 如果为True,计算中心化的RMSProp,并且用它的方差预测值对梯度进行归一化
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
6.自适应矩估计 Adam算法
torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:1e-3)
betas (Tuple[float, float], 可选)
– 用于计算梯度以及梯度平方的运行平均值的系数(默认:0.9,0.999)
eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-8)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
优缺点:
Adam的优点
主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。
Adam结合了Adagrad善于处理稀疏梯度
和RMSprop善于处理非平稳目标
的优点。
7.Adamax算法(Adamd的无穷范数变种)
Adamax 是对 Adam 增加了一个学习率上限的概念,所以也称之为 Adamax。
torch.optim.Adamax(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:2e-3)
betas (Tuple[float, float], 可选) – 用于计算梯度以及梯度平方的运行平均值的系数
eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-8)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
优缺点:
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。
Adamax学习率的边界范围更简单。
8.SparseAdam算法
针对稀疏张量的一种“阉割版”Adam 优化方法。
torch.optim.SparseAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08)
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:2e-3)
betas (Tuple[float, float], 可选) – 用于计算梯度以及梯度平方的运行平均值的系数
eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-8)
9.L-BFGS算法
L-BFGS 属于拟牛顿算法。 L-BFGS 是对 BFGS 的改进,特点就是节省内存。
torch.optim.LBFGS(params, lr=1, max_iter=20, max_eval=None, tolerance_grad=1e-05, tolerance_change=1e-09, history_size=100, line_search_fn=None)
lr (float) – 学习率(默认:1)
max_iter (int) – 每一步优化的最大迭代次数(默认:20))
max_eval (int) – 每一步优化的最大函数评价次数(默认:max * 1.25)
tolerance_grad (float) – 一阶最优的终止容忍度(默认:1e-5)
tolerance_change (float) – 在函数值/参数变化量上的终止容忍度(默认:1e-9)
history_size (int) – 更新历史的大小(默认:100)
10.弹性反向传播算法 Rprop算法
该优化方法适用于 full-batch,不适用于 mini-batch。不推荐。
torch.optim.Rprop(params, lr=0.01, etas=(0.5, 1.2), step_sizes=(1e-06, 50))
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认:1e-2)
etas (Tuple[float, float], 可选)
– 一对(etaminus,etaplis), 它们分别是乘法的增加和减小的因子(默认:0.5,1.2)
step_sizes (Tuple[float, float], 可选)
– 允许的一对最小和最大的步长(默认:1e-6,50)
优缺点:
该优化方法适用于 full-batch,不适用于 mini-batch。不推荐。
参考链接:
https://blog.csdn.net/qq_41468616/article/details/120996127