自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

qq_36718317的博客

欢迎关注

  • 博客(136)
  • 资源 (13)
  • 收藏
  • 关注

原创 84. Largest Rectangle in Histogram

84. Largest Rectangle in HistogramGiven n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,

2020-10-03 10:33:35 216

原创 84. Largest Rectangle in Histogram

84. Largest Rectangle in HistogramGiven n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.Example:Input: [2,1,5,6,2,3]Output: 10题目大意给出一个直方图,求可以组成

2020-10-02 14:50:35 192

原创 402. Remove K Digits

402. Remove K DigitsGiven a non-negative integer num represented as a string, remove k digits from the number so that the new number is the smallest possible.Note:The length of num is less than 10002 and will be ≥ k.The given num does not contain any

2020-09-28 22:49:26 229

原创 880 Decoded String at Index

880 Decoded String at IndexAn encoded string S is given. To find and write the decoded string to a tape, the encoded string is read one character at a time and the following steps are taken:If the character read is a letter, that letter is written onto

2020-09-26 20:54:38 172

原创 456. 132 Pattern

456. 132 PatternGiven an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j].Return true if there is a 132 pattern in nums, otherwise retu

2020-09-25 09:56:44 172

原创 173 Binary Search Tree Iterator

173 Binary Search Tree IteratorImplement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.Calling next() will return the next smallest number in the BST.Example:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上

2020-09-12 11:12:28 129

原创 1209. Remove All Adjacent Duplicates in String II

1209. Remove All Adjacent Duplicates in String IIGiven a string s, a k duplicate removal consists of choosing k adjacent and equal letters from s and removing them causing the left and the right side of the deleted substring to concatenate together.We re

2020-09-09 20:16:32 186

原创 Python自动查询考研成绩并发送到邮箱

声明:本人原创,搬运自本人知乎。使用selenium模拟浏览器操作,判断有无出成绩,若出则截图发送到邮箱。代码如下:import smtplibimport timefrom email.mime.image import MIMEImagefrom email.mime.multipart import MIMEMultipartfrom email.mime.text i...

2020-02-14 21:08:51 2780 8

原创 北航软院系统分析大作业

简介项目主要是做一个科技资源共享平台,其实就是低配版的百度学术,从百度学术中爬取数据,后端采用Flask Restful 框架和MongoDB数据库,前端采用Vue.js,搜索引擎使用的是Elasticsearch。项目主页:斑马科技资源平台支持对专家,论文和学者的搜索,以及各种限定条件的高级搜索,并且搜索出来的关键词高亮。效果大概如下:搜索结果:其余的就不一一展示了。...

2019-06-16 15:10:49 2079

原创 错误 No such Table ‘auth_user’

被这个错误搞了快一天了。。。。。。。。图片是网上找的,我的版本是Python3.6.8,django2.1.0。之前就查到是版本的问题,从1.8升级到2.1.8,结果2.1.8版本太高也有其它错误,后来降到2.1.0,就出现这个错误。错误原因可能性:一、django版本问题,建议2.1.0以上,我目前是2.1.7,没出现问题。二、没有为模型创建默认的库这里执行python ...

2019-05-20 12:56:44 519

原创 现代操作系统笔记——第六章死锁

第六章死锁可抢占资源:可以从拥有它的进程中抢占而不会产生任何副作用,例如存储器不可抢占资源:在不引起相关的计算失败的情况下,无法把它从占有它的进程处抢占过来。死锁与不可抢占资源有关,有关可抢占资源的潜在死锁通常可以通过在进程之间重新分配资源而化解。使用资源的顺序:请求、使用、释放资源。死锁定义死锁的必要条件死锁建模检查资源分配图是否有环路来判断死锁。...

2019-04-08 22:05:11 469

原创 现代操作系统笔记——第五章输入输出

第五章输入输出(IO)IO设备分为两类:块设备把信息存储在固定大小的块中,每个块都有自己的地址,所有传输以一个或多个完整的块为单位,基本特征时每个块能独立于其它的块而读写。如磁盘字符设备以字符为单位发送或接收一个字符流,而不考虑任何块结构,不可寻址也没有任何寻道操作,如打印机、网络接口、鼠标等 时钟、内存映射的显示器不属于以上两种。设备控制器IO设备一般由机械...

2019-04-08 22:03:33 853

原创 现代操作系统笔记——第四章文件系统

第四章文件系统(找不到重点……)文件:进程创建的信息逻辑单元。存储在文件里的信息必须持久。文件系统:操作系统中处理文件的部分文件存储信息的基本要求 文件系统结构字节序列为操作系统提供最大灵活性固定长度记录序列 记录树可用快速查找文件访问顺序访问 随机访问文件属性 名称、类型、位置、大小、保护、时间……文件操作 Crea...

2019-04-08 22:02:17 329

原创 现代操作系统笔记——第三章内存管理

第三章内存管理基址寄存器和界限寄存器交换技术进程完整调入内存,然后运行一段时间再存回磁盘。当换入或移动进程时为它分配一些额外的内存,以解决进程空间动态增长。使用链表的存储管理首次适配、下次适配、最佳适配、最差适配、快速适配。虚拟内存分页虚拟地址空间的页面对应物理内存的页框。缺页中断若虚拟地址空间中的地址没有被映射到物理空间中,C...

2019-04-08 22:00:59 353

原创 543Diameter of Binary Tree

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may n...

2019-01-19 14:50:09 199

原创 现代操作系统笔记——第二章进程与线程

第二章进程与线程进程进程模型进程就是一个正在执行程序的实例,包括程序计数器,寄存器和变量当前的值。一个进程是某种类型的一个活动,它有程序、输入、输出以及状态。单个处理器可以被若干进程共享,使用某种调度算法决定何时停止一个进程的工作而为另一个进程服务。进程创建4种主要事件导致进程创建1、系统初始化2、正在运行的程序执行了创建进程的系统调用3、用户请求创建一个新进程...

2019-01-15 10:01:03 340

原创 现代操作系统笔记——第一章引论

第一章引论1、什么是操作系统内核态与用户态区别操作系统的任务自顶向下观点:创建好的抽象,并实现和管理它创建的抽象对象。自底向上观点:在相互竞争的程序之间有序地控制处理器、存储器以及其它IO接口设备的分配。资源管理观点:记录哪个程序在使用什么资源,对资源请求进行分配,评估使用代价,并且为不同的程序和用户调解相互冲突的资源请求。资源管理的两种不同方式时间上复用和空间...

2019-01-15 09:59:23 208

原创 北航计算机网络复习

第一章计算机网络按照覆盖范围分为广域网、城域网、局域网网络协议:为进行网络中的数据交换而建立的规则、标准或约定网络协议三个基本要素:语法、语义、时序协议和服务的区别和联系TCP/IP的四层协议,OSI的七层协议,五层协议及其功能尚未找到标准答案,欢迎更改书上:应用层:通过应用进程之间的交互来完成特定网络应用。运输层:负责向两台主机之间的通信提供通...

2019-01-11 13:36:07 1486

转载 集线器(hub),交换机以及路由器异同;冲突域和广播域详解

转载自:https://blog.csdn.net/gui951753/article/details/79402528目录冲突域和广播域联网中继设备集线器(hub)交换机(switch)路由器(route)三者的异同1)工作层次不同2)数据转发依据对象不同3)分割冲突域,广播域4)防火墙功能参考文献冲突域和广播域在介绍这三个设备的异同之前,我们首先需要了解冲突域和...

2018-12-26 13:29:29 1197

原创 897——Increasing Order SearchTree

题目Given a tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only 1 right child.大意给出一个树,重新排列,使得最左的节点是树的根...

2018-12-19 20:40:59 209

原创 VS2017出现许可证过期解决方法

这个问题折腾了好几天,还得我不得不放弃好用的winform而去用python的tkinter库做界面,后来终于找到解决方法了。问题如下:打开后说许可证过期,期间换了n个账号都没用,只能退出。后来才知道,只要用管理员身份运行即可,简直是太坑了。。。。。。  ...

2018-11-19 17:55:57 38534 10

原创 字节跳动数据抓取实习生面试

下午的面试,几乎崩溃。问啥都不会,还是基础不牢啊,得恶补。。。记录一下面试题:1 python的GIL是啥?我:?????,不会。详解,GIL:全局解释器锁。每个线程在执行的过程都需要先获取GIL,保证同一时刻只有一个线程可以执行代码。线程释放GIL锁的情况: 在IO操作等可能会引起阻塞的system call之前,可以暂时释放GIL,但在执行完毕后,必须重新获取GIL2 计算...

2018-10-26 16:55:59 3085

原创 成绩排序

题目描述查找和排序题目:输入任意(用户,成绩)序列,可以获得成绩从高到低或从低到高的排列,相同成绩都按先录入排列在前的规则处理。示例:jack      70peter     96Tom       70smith     67从高到低  成绩 peter     96 jack      70 Tom       70 smith     67从低到高...

2018-08-05 16:29:00 315

原创 机器学习实战——文本分类

朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题。缺点:对输入数据的准备方式较为敏感。适用数据类型:标称型数据核心思想:选择高概率对应的类别。条件概率:代码:from numpy import *def loadDataSet(): postingList=[['my','dog','has','flea',\ ...

2018-07-22 15:13:53 510

原创 Beautifulsoup常见用法

import refrom bs4 import BeautifulSouphtml=""""""soup=BeautifulSoup(html,'lxml')print(soup.title)print(type(soup.title))print(soup.title.string)print(soup.head)print(soup.p) #只会选择第一个匹配的节点pr...

2018-07-09 23:20:52 230

原创 486. Predict the Winner

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a...

2018-06-09 20:54:27 138

原创 软件工程复习

数据流程图示例:状态图描述从一个状态到另一个状态的控制流程,最重要的目的是建立一个对象从创建到终止的生命周期。示例:流程图注意平行四边形表示数据的输入输出,菱形表示判断,矩形表示执行的处理。示例:ER图实体:客观上可以相互区分的事物,可以是人、物,也可以是抽象的概念与联系。属性:实体具有的某一特性,是相对实体而言的。联...

2018-05-29 16:37:43 1036

原创 C#复习

Assemblies文件名和类名可以不一样。C#大小写敏感,@可以把关键字变成标识符,也可以原来忽略转义。类型:值类型:bool ,char ,sbyte,short,int,long,byte,ushort,uint,ulong,float,double,decimal,enums,structs.引用类型:class,interface,arrays,delegates值类型分配在栈上,初始化...

2018-05-28 15:30:05 885

原创 机器学习实战——KNN算法手写数字识别

数据源我们的文本是形如这样的,每个数字都有很多txt文件,TXT里面是01数字,表示手写数字的灰度图。现在我们要用knn算法实现数字识别。数据处理每个txt文件都是32*32的0,1矩阵,如果要使用knn,那么还得考虑行列关系,如果能把它拉开,只有一行,就可以不必考虑数字是第几行了,会更加方便。#手写数字识别#将32*32矩阵转化为1*1024def img2vector(filename):...

2018-05-24 11:35:11 1133

原创 机器学习实战——KNN算法改进约会网站配对效果

背景:        将约会网站的人分为三种类型:不喜欢的,魅力一般的,极具魅力的,分别用数字1,2,3表示,这些是样本的标签。样本特征为,每年飞行里程,玩视频游戏占百分比,每周消费冰淇淋公升数。    文件格式如下:首先要解析文本。代码如下:def file2matrix(filename): fr=open(filename) arrayOLines=fr.readlines(...

2018-05-24 10:50:31 834 2

原创 机器学习实战——KNN算法预测电影类型

 预测电影类型    现有爱情片和动作片(不是爱情动作片,雾)的打斗场面和接吻场面的次数统计,然后给出一个电影打斗场面和接吻场面出现的次数,预测其类型。那么如何预测呢?当然用KNN了。        KNN算法的原理就是,存在一个训练样本集,我们知道样本集中每一数据与其所属分类的对应关系,然后输入没有标签的新数据,我们可以通过将它的特征与样本集中数据的特征进行比较,提取样本中最相似的分类标签,一般...

2018-05-23 10:54:30 3692 2

原创 opencv学习笔记8——形态学滤波

一、膨胀和腐蚀二、开运算、闭运算、形态学梯度、顶帽、黑帽示例代码:#include&lt;opencv2\core\core.hpp&gt;#include&lt;opencv2\highgui\highgui.hpp&gt;#include&lt;opencv2\imgproc\imgproc.hpp&gt;#include&lt;iostream&gt;using namespace ...

2018-05-14 18:53:21 225

原创 opencv学习笔记7——图像处理滤波

一、方框滤波二、均值滤波三、高斯滤波代码:#include&lt;opencv2\core\core.hpp&gt;#include&lt;opencv2\highgui\highgui.hpp&gt;#include&lt;opencv2\imgproc\imgproc.hpp&gt;#include&lt;iostream&gt;using namespace std;using n...

2018-05-12 20:51:41 243

原创 374. Guess Number Higher or Lower

We are playing the Guess Game. The game is as follows:I pick a number from 1 to n. You have to guess which number I picked.Every time you guess wrong, I'll tell you whether the number is higher or low...

2018-05-09 18:42:17 128

原创 416. Partition Equal Subset Sum

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.Note:Each of the array element w...

2018-05-08 22:28:41 124

原创 opencv学习笔记6——core组件图像叠加与图像混合

#include&lt;opencv2/core/core.hpp&gt;#include&lt;opencv2/highgui/highgui.hpp&gt;#include&lt;iostream&gt;using namespace cv;using namespace std;//图像添加bool ROI_AddImage(){ Mat srcImage1 = imread...

2018-05-08 19:38:20 404

原创 OpenCV学习笔记5——core组件访问图像像素

#include&lt;opencv2/core/core.hpp&gt;#include&lt;opencv2/highgui/highgui.hpp&gt;#include&lt;iostream&gt;using namespace std;using namespace cv;//指针访问像素void colorReduce1(Mat &amp;dstImage, Mat &a...

2018-05-08 17:48:40 142

原创 OpenCV学习笔记4——基本函数和绘图

#include&lt;opencv2/opencv.hpp&gt;#include&lt;opencv2/core/core.hpp&gt;#include&lt;opencv2/highgui/highgui.hpp&gt;#include&lt;opencv2/imgproc/imgproc.hpp&gt;using namespace cv;#define WINDOW_NAME...

2018-05-07 19:26:17 182 1

原创 OpenCV学习笔记3——鼠标操作

#include&lt;opencv2/opencv.hpp&gt;using namespace cv;#define WINDOW_NAME "[程序窗口]"Rect g_rectangle;bool g_bDrawingBox = false;//是否进行绘制RNG g_rng(12345);//RNG( )函数的作用为初始化随机数状态的生成器;void DrawRectang...

2018-05-06 20:16:44 211

原创 OpenCV学习笔记2-滑动条的创建

#include&lt;opencv2/opencv.hpp&gt;#include"opencv2/highgui/highgui.hpp"using namespace cv;using namespace std;#define WINDOW_NAME "[线性混合示例]"const int g_nMaxAlphaValue = 100;int g_nAlphaValueSlid...

2018-05-06 17:43:45 156

2020王道考研计算机组成原理

2020年王道考研计算机组成原理,计算机考研必备,人手一本

2019-04-16

2020王道考研数据结构

2020年王道考研数据结构,计算机软件考研学子必备,人手一本。

2019-04-16

2020王道考研操作系统

2020年王道考研操作系统,计算机考研学子必备,人手一本,十分经典。

2019-04-16

机器学习实战:基于Scikit-Learn和TensorFlow pdf、代码和数据集

本书主要分为两个部分。第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络

2019-04-03

图解HTTP彩色版,带标签

172张图解轻松入门    从基础知识到最新动向,一本书掌握HTTP协议    Web前端开发者必备,从基础知识到最新动向一网打尽   本书前半部分由HTTP的成长发展史娓娓道来,基于HTTP 1.1 标准讲解通信过程,包括HTTP方法、协议格式、报文结构、首部字段、状态码等的具体含义,还分别讲解HTTP通信过程中代理、网关、隧道等的作用。接着介绍SPDY、WebSocket、WebDAV等HTTP的扩展功能。作者还从细节方面举例,让读者更好地理解何为无状态(stateless)、301和302重定向的区别在哪、缓存机制,等等。本书后半部分的重心放在Web安全上,涵盖HTTPS、SSL、证书认证、加密机制、Web攻击手段等内容。 作者简介   上野 宣    OWASP 日本分会会长,TRICORDER株式会社董事长。    主要从事安全咨询、风险评估、信息安全教育等工作。著有《今晚我们一起学习邮件协议》(今夜わかるメールプロトコル)、《今晚我们一起学习TCP/IP》(今夜わかるTCP/IP)、《今晚我们一起学习HTTP》(今夜わかるHTTP)。担任The Tangled Web:A Guide to Securing Modern Web Application日文版的审校工作。   译者简介    于均良    上海交通大学硕士,高级软件工程师,马拉松跑者,四点网创始人。

2018-12-04

机器学习,机器学习实战,统计学习方法

包含机器学习,机器学习实战,统计学习方法三本pdf,学习机器学习必备书籍。包含书签。

2018-10-28

Office完全卸载工具

office卸载工具,一键卸载office,傻瓜式操作,十分方便快捷。

2018-06-19

TCP-IP详解

包括TCP-IP详解卷1,2,3,以及图解TCP-IP。本书是TCP/IP领域的经典之作!书中完整而详细地介绍了TCP/IP协议是如何实现的。本书介绍了一个实际的TCP/IP实现,并给出了这一实现的完整源代码,帮助读者全面掌握TCP/IP的实现。本书内容详尽,几乎每章都提供精选的习题,并在附录中提供了部分习题的答案。

2018-06-18

北航数据结构PPT

北航数据结构PPT,考研的可以看看啦。基于严蔚敏版的书。

2018-05-31

Java神经网络编程

Java写的神经网络,不过掌握思想,什么语言都无所谓。

2018-05-31

学习OpenCV3

最新版本的学习OpenCV3。PDF电子书及配套代码 1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 全书的概述,为什么会有这本书?如何学习这本书 2. Introduction to OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 对于OpenCV的简介 二 数据结构和操作 3. Getting to Know OpenCV Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 OpenCV中的数据结构,不仅包括Mat,而且包括algorim等复杂结构 4. Images and Large Array Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 大型复杂的数据结构 97 5. Array Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 数据结构的操作 三 基本函数 6. Drawing and Annotating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 如何标记识别结果 7. Functors in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 OpenCV中的函数 180 8. Image, Video, and Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 如题 四 交叉编译 204 9. Cross-Platform and Native Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 如何交叉编译 五 高级处理 247 10. Filters and Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 滤波和卷积 294 11. General Image Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 常见的图像变换 332 12. Image Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 图像分析 371 13. Histograms and Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 直方图和模板匹配 六 轮廓 14. Contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 轮廓 七 背景去除 15. Background Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 背景去除 八 特征点 16. Keypoints and Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 特征点 九 跟踪 17. Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 跟踪 634 十 三维 18. Camera Models and Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 相机模型 688 19. Projection and Three-Dimensional Vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 3维建模 十一 机器学习 766 20. The Basics of Machine Learning in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 基本机器学习 797 21. StatModel: The Standard Model for Learning in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . 799 标准机器学习 871 22. Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 物体探测 十二 备注 907 23. Future of OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 OpenCV的特性 Afterword 920 A. Planar Subdivisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 B. opencv_contrib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939 C. Calibration Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967

2018-05-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除