巴西大神开发的 ARPL 黑群晖DSM系统引导在线编译工具

ARPL 是一款黑群晖系统引导在线编译工具,目前支持最新群晖系统DSM 7.1.1,今天为了折腾升级这个群晖系统DSM 7.1.1浪费了一天的时间,ARPL是巴西人一位大神开发的黑群晖系统引导在线编译工具,使用下来非常的不错,可惜没有简体中文操作界面,不过几个英文单词也难不倒我们,而且网上还有大把的教程,参考一下就可以完全掌握ARPL工具的使用方法,如果你实在不会的,阿成会在明天给大家做个图文教程。ARPL 黑群晖系统引导在线编译工具在GitHub上开源代码,非常的安全,非常的可靠。

在这里插入图片描述ARPL 黑群晖系统引导在线编译工具项目地址 https://github.com/fbelavenuto/arpl

中文版arpl编译系统github仓库地址:https://github.com/wjz304/arpl-zh_CN

中文版arpl编译系统下载地址:https://github.com/wjz304/arpl-zh_CN/releases

arpl-beta2.img.zip 是物理(实体)机使用的不要选择错了

arpl-beta2.vmdk-dyn.zip 虚拟机使用的不要选择错了

arpl-beta2.vmdk-flat.zip 虚拟机使用的不要选择错了

在这里插入图片描述软件官方英文版:https://github.com/fbelavenuto/arpl/releases

中文版arpl编译系统github仓库地址:https://github.com/wjz304/arpl-zh_CN

中文版arpl编译系统下载地址:https://github.com/wjz304/arpl-zh_CN/releases

百度网盘:https://pan.baidu.com/s/1aIpQDTEuJzYu9J5–lwQfw 提取码: hm3y

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿成学长_Cain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值