- 博客(26)
- 收藏
- 关注
原创 每日总结day23-25
力扣题目链接(opens new window)使用栈实现队列的下列操作:push(x) -- 将一个元素放入队列的尾部。pop() -- 从队列首部移除元素。peek() -- 返回队列首部的元素。empty() -- 返回队列是否为空。示例:说明: 思路与注意点:1】在这里需要两个栈分别模拟输入端和输出端。2】这里pop()注意:分为stOut为空和不为空的情况,为空则表示第一次进行pop或peek。3】这里peek函数中使用pop为基础获取开头元素后将值push回去时应该从stOut回
2023-03-17 22:36:22 427
原创 每日总结day22
先让fast指针走N步,然后再让slow与fast同时向后走,直到fast指向末尾,此时slow指向需要删除节点的前一个节点,最后进行删除操作slow->next=slow->next->next。
2023-03-15 09:59:02 418
原创 每日总结day21
给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。示例 1:输入: "abab"输出: True解释: 可由子字符串 "ab" 重复两次构成。示例 2:输入: "aba"输出: False示例 3:输入: "abcabcabcabc"输出: True解释: 可由子字符串 "abc" 重复四次构成。(或者子字符串 "abcabc" 重复两次构成。
2023-03-13 23:03:26 428
原创 每日总结day20
昨天玩得太开心了,心还是没能完全收住,也走得比较累(脚今天有点不太舒服,旧伤复发,呜呜),早上和午休都睡了好久。又休息了一天,哈哈。今天看了一个比较难也很重要算法,已经基本理解了,特此做个复习笔记。1、KMP算法简介KMP算法由这三位学者发明的:Knuth,Morris和Pratt,所以取了三位学者名字的首字母。所以叫做KMP。KMP算法主要应用在字符串匹配上。上述图片就是KMP算法的核心,其就是根据前缀表来减少循环次数,从而将O(m*n)的计算复杂度降低为O(m+n)。n为文本串长度,m为模式串长度。其中
2023-03-13 00:49:59 220 1
原创 每日总结day18
编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。示例 1:输入:["h","e","l","l","o"]输出:["o","l","l","e","h"]示例 2:输入:["H","a","n","n","a","h"]输出:["h","a","n","n","a","H"]
2023-03-09 22:24:20 66
原创 每日总结day15
在C语言中typedef用来给复杂声明定义别名。一句话帮你理解typedef的用法 - 知乎 (zhihu.com)#define是C语言中提供的宏定义命令,其主要目的是为程序员在编程时提供一定的方便,并能在一定程度上提高程序的运行效率,但学生在学习时往往不能 理解该命令的本质,总是在此处产生一些困惑,在编程时误用该命令,使得程序的运行与预期的目的不一致,或者在读别人写的程序时,把运行结果理解错误,这对 C语言的学习很不利。C++宏定义详解 - Boblim - 博客园 (cnblogs.com)
2023-03-06 22:43:40 80
原创 每日总结day09
目录一、深度学习理论基础笔记总结二、宣讲会 三、YOLOV5口罩识别数据集制作完成四、明日参加招聘会 《百面机器学习》书中P220公式有误,这里重新将反向传播公式手推了一遍:
2023-02-27 23:05:28 198
原创 每日总结-day08(周小结)
今日将刷过的题目算法思路重新过了一遍,明日将各个部分的知识点、易混淆的语法与知识漏洞进行总结。以防理解过浅容易忘记。
2023-02-26 22:44:58 322
原创 每日总结day07
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 + 7 = 9所以返回 [0, 1]
2023-02-26 10:19:39 142
原创 每日总结-day04
输入:head = [1,2,6,3,4,5,6], val = 6。输入:head = [7,7,7,7], val = 7。题意:删除链表中等于给定值 val 的所有节点。输入:head = [], val = 1。输出:[1,2,3,4,5]
2023-02-22 22:32:30 73
原创 每日总结-day03
运算符重载是C++一种形式的多态,允许赋予C++运算符多种含义。例如我们有一个Time类,包括小时和分钟,平常我们是没法直接让两个Time类相加获取总的小时分钟的。这时我们可以使用对+运算符重载。提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2023-02-21 21:58:09 199
原创 每日总结-day02
在模型评估过程中,过拟合和欠拟合具体指什么现象过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现好,但是在测试集和新数据上的表现较差。欠拟合指的是模型在训练和预测时表现都不好。用模型在数据上的偏差和方差指标来表示就是:欠拟合时候,偏差比较大;而过拟合时,偏差较小但方差较大。降低过拟合和欠拟合的方法1.特征-减少不必要的特征1)根据特征的重要性,直接删除稀疏特征;2)通过收集更多的数据,或者用数据增广的方法,产生更多的训练数据;
2023-02-20 23:06:12 82
原创 AI算法工程师笔试面试总结
1)监督学习是使用已知正确答案的示例来训练网络。一直数据和其一一对应的标签,训练一个智能算法,将输入数据映射到标签的过程。2)监督式学习的常见应用场景如分类问题和回归问题。3)常见的算法有逻辑回归(Logistic Regression)和反向传播神经网络(Back Propagation Neural Network)。1)在非监督式学习中,数据并不被特别标识,适用于你具有数据集但无标签的情况。学习模型是为了推断出数据的一些内在结构。2)常见的应用场景包括关联规则的学习以及聚类等。
2023-02-19 22:46:35 1193
原创 Leetcode-704:二分查找算法
数组为有序数组、数组中无重复元素。对这两个条件要有敏感度,当算法题中出现这两个条件,就要优先考虑一下二分法。target在左闭右闭区间内即[left, right],或者在左闭右开区间内即[left, right)。然后根据区间去确定while循环条件、left与right的更新。3、在CSDN在线写笔记时注意慎用撤销或Ctrl+Z快捷键,否则内容会丢失!!!
2023-02-19 13:07:30 125
原创 [AM-GCN Applied Intelligence2021] Triplet attention multiple spacetime-semantic graph convolutional
论文:[AM-GCN Applied Intelligence2021] Triplet attention multiple spacetime-semantic graph convolutional network for skeleton-based action recognition;在本文中,最主要的工作就是采用了时空特征与语义特征双流的特征提取操作,并使用3个维度的注意力机制在每个流中提高准确性,最后将两个流中的特征进行融合。以此通过语义信息的加成增强不同动作特征的特异性,并且加之以3个
2021-11-26 10:20:42 2686
原创 [AAM-GCN Neurocomputing2021] Attention adjacency matrix based graph convolutional networks for skele
论文:[AAM-GCN Neurocomputing2021] Attention adjacency matrix based graph convolutional networks for skeleton-based action recognition;该论文最主要的工作就是提出了一个注意力邻接矩阵(AAM:attention adjacency matrix,其中这个矩阵包含两部分EPN和ATM),从而解决了以往图卷积对过平滑(over-smoothing)的问题,且由于该矩阵引入了更加灵活
2021-11-26 10:19:26 2753
原创 [AMV-GCNs Neurocomputing2021] Adaptive multi-view graph convolutional networks for skeleton-based ac
本篇论文也是2021年的一篇论文,下面对其最重要的部分进行阐述:该论文最主要的工作有两点:1】新的骨架图构建方法(两种节点和3种边),构建出来的图称之为STF节点有vt,i和wt,i边有:其中由节点有两种,因此比以往骨架图节点数翻了一倍,其边就还是使用邻接矩阵进行描述,边的种类增加不会增加图存储空间。因此作者构建出来的骨架图表示如下图右边所示:上图中:红点表示空间节点vt;绿色圆点表示时间节点wt;黑、黄、蓝线代表第一、第二、第三连接。2】主要工作:作者认为不同视
2021-11-26 10:16:09 603
原创 [JOLO-GCN WACV2021]Mining Joint-Centered Light-Weight Information for Skeleton-Based Action Recognit
这篇论文是2021的一篇论文,比较简单。下面是本人对其中最重要部分的一些理解。该论文最主要的工作就是在骨架数据集对应的原RGB视频图像中提取出了一个以对应骨架节点为中心的小范围精细运动的光流。如下图,可看出该光流((c))图和普通光流((a)图)不一样的是将中心点(对应骨架图中的关节点)的位移运动矢量去掉,只剩下围绕该中心点旋转扭曲等精细运动的运动矢量组成的光流图,原文称为Joint-aligned optical Flow Patches (JFP)。动机:骨架动作识别里面精细动作信息是提高识别精度的
2021-11-26 10:13:28 2610
原创 AAAI2018||ST-GCN:Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
在本博客中,我将对骨架动作识别任务中应用图卷积的开山之作ST-GCN进行重述,其中会参杂个人的理解。本篇博客内容为本人研究生阶段结课作业与论文部分内容,因此改进部分暂时未上传;本篇博客旨在于广大同学一起分享讨论于进步,请勿私自转载。在文末将会对ST-GCN中的图卷积代码进行图画阐述。后续可能会更新代码讲解。一、摘要在基于骨架的动作识别任务中,动态的人体骨架具有该任务所需的重要信息,然而以往传统的方法通常使用手工特征或遍历规则对骨架进行建模,不仅限制了模型表达能力还使得模型泛化困难;因此作者提出了
2021-11-16 13:05:33 5875 2
原创 【论文笔记】ECCV 2018 || Videos as Space-Time Region Graphs
论文获取地址:https://arxiv.org/abs/1806.01810(ECCV 2018)作者: Xiaolong Wang, Abhinav Gupta (CMU)之所以看到该论文,是在前不久收听中科院B站上的录播内容,就是胡瀚研究员介绍自己的swin transformer的工作时指出这篇论文也很早的尝试了对相对关系建模的实现。可以发现现今计算机视觉邻域大火的transformer的本质也就是这个相对关系的建模。一、论文概述1、问题的提出通过对人与物体的交互动作...
2021-11-14 23:49:12 2274
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人