平衡 L1损失(Balanced L1 Loss)
平衡上述损失的一个常用方法就是调整两个任务损失的权重,然而,回归目标是没有边界的,直接增加检测框回归损失的权重将使得模型对outliers更加敏感,这些hard samples产生过大的梯度,不利于训练。inliers相比outliers对整体的梯度贡献度较低,相比hard sample,平均每个easy sample对梯度的贡献为hard sample的30%,基于上述分析,提出了balanced L1 Loss(Lb)。α,γ从样本和任务层面控制平衡,通过调整这两个参数,从而达到更加平衡的训练。
原创
2023-09-11 16:25:20 ·
547 阅读 ·
0 评论