平衡二叉树
力扣连接:110. 平衡二叉树(简单)
题外话
- 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
- 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
1.递归的方法
递归的图解步骤
暂无
递归代码
class Solution {
public boolean isBalanced(TreeNode root) {
int result = nodeDepth(root);
return result==-1?false:true;
}
public int nodeDepth(TreeNode node){
if(node==null) return 0;
int lefCount = nodeDepth(node.left); //左
if(lefCount==-1) return -1;
int rightCount = nodeDepth(node.right); //右
if(rightCount==-1) return -1;
//中
int gap = Math.abs(lefCount-rightCount);
if(gap>1) return -1;
// 以当前节点为根节点的树的最大高度
return Math.max(lefCount, rightCount) + 1;
}
}
2.迭代的方法
由于涉及回溯,不适用迭代的方法
总结
二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。
二叉树的所有路径
力扣连接:257. 二叉树的所有路径(简单)
1.递归的方法
递归的图解步骤
本题使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。
递归代码
class Solution {
/**
* 递归法
*/
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();// 存最终的结果
if (root == null) {
return res;
}
List<Integer> paths = new ArrayList<>();// 作为结果中的路径
traversal(root, paths, res);
return res;
}
private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
paths.add(root.val);// 前序遍历,中
// 遇到叶子结点
if (root.left == null && root.right == null) {
// 输出
StringBuilder sb = new StringBuilder();// StringBuilder用来拼接字符串,速度更快
for (int i = 0; i < paths.size() - 1; i++) {
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size() - 1));// 记录最后一个节点
res.add(sb.toString());// 收集一个路径
return;
}
// 递归和回溯是同时进行,所以要放在同一个花括号里
if (root.left != null) { // 左
traversal(root.left, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
if (root.right != null) { // 右
traversal(root.right, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
}
}
左叶子之和
力扣连接:404. 左叶子之和(简单)
左叶子是什么节点:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点
图解步骤
代码
class Solution {
int sum = 0;
public int sumOfLeftLeaves(TreeNode root) {
sumNode(root);
return sum;
}
public void sumNode(TreeNode root){
if(root==null) return;
if(root.left!=null){
if(root.left.right==null&&root.left.left==null){
sum+=root.left.val;
}
}
sumNode(root.left);
sumNode(root.right);
}
}