【5.05 代随_17day】 平衡二叉树、二叉树的所有路径、左叶子之和


平衡二叉树

力扣连接:110. 平衡二叉树(简单)

题外话

  • 二叉树节点的深度:指从根节点该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点叶子节点的最长简单路径边的条数。
    在这里插入图片描述

1.递归的方法

递归的图解步骤

暂无

递归代码

class Solution {
    public boolean isBalanced(TreeNode root) {

        int result = nodeDepth(root);
        return result==-1?false:true;
    }

    public int nodeDepth(TreeNode node){
        if(node==null) return 0;

        int lefCount = nodeDepth(node.left);    //左
        if(lefCount==-1) return -1;
        int rightCount = nodeDepth(node.right); //右
        if(rightCount==-1) return -1;

        //中
        int gap = Math.abs(lefCount-rightCount);
        if(gap>1) return -1;

        // 以当前节点为根节点的树的最大高度
        return Math.max(lefCount, rightCount) + 1;
    }
}

2.迭代的方法

由于涉及回溯,不适用迭代的方法

总结

二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。



二叉树的所有路径

力扣连接:257. 二叉树的所有路径(简单)

1.递归的方法

递归的图解步骤

本题使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。
在这里插入图片描述

递归代码

class Solution {
    /**
     * 递归法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();// 存最终的结果
        if (root == null) {
            return res;
        }
        List<Integer> paths = new ArrayList<>();// 作为结果中的路径
        traversal(root, paths, res);
        return res;
    }

    private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
        paths.add(root.val);// 前序遍历,中
        // 遇到叶子结点
        if (root.left == null && root.right == null) {
            // 输出
            StringBuilder sb = new StringBuilder();// StringBuilder用来拼接字符串,速度更快
            for (int i = 0; i < paths.size() - 1; i++) {
                sb.append(paths.get(i)).append("->");
            }
            sb.append(paths.get(paths.size() - 1));// 记录最后一个节点
            res.add(sb.toString());// 收集一个路径
            return;
        }
        // 递归和回溯是同时进行,所以要放在同一个花括号里
        if (root.left != null) { // 左
            traversal(root.left, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
        if (root.right != null) { // 右
            traversal(root.right, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
    }
}


左叶子之和

力扣连接:404. 左叶子之和(简单)

左叶子是什么节点:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子左叶子节点

图解步骤

在这里插入图片描述

代码

class Solution {
    int sum = 0;
    public int sumOfLeftLeaves(TreeNode root) {      
        sumNode(root);
        return sum;
    }

    public void sumNode(TreeNode root){
        if(root==null) return;

        
        if(root.left!=null){
            if(root.left.right==null&&root.left.left==null){
                sum+=root.left.val;
            }
        }
        
        sumNode(root.left);
        sumNode(root.right);

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值