【5.31 代随_43day】 最后一块石头的重量 II、目标和、一和零


最后一块石头的重量 II

力扣连接:1049. 最后一块石头的重量 II(中等)

1.方法

和 416. 分割等和子集 (opens new window) 非常像了

图解步骤在这里插入图片描述

代码

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = Arrays.stream(stones).sum();
        int target = sum/2;
        
        int[] dp = new int[target+1];

        int n = stones.length;
        for(int i=0;i<n;i++){
            for(int j=target; j>=stones[i]; j--){
                dp[j] = Math.max(dp[j], dp[j-stones[i]]+stones[i]);
            }
        }

        int other = sum-dp[target];//另一堆石头

        return other-dp[target];
    }
}


目标和

力扣连接:494. 目标和(中等)

1.方法

  1. 确定dp数组以及下标的含义
    dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

  2. 确定递推公式
    只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
    例如:dp[j],j 为5,
    已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
    已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
    已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
    已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
    已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
    那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

图解步骤

在这里插入图片描述

关键点

  • if (abs(target) > sum) return 0; // 此时没有方案
  • f ((target + sum) % 2 != 0) return 0; // 此时没有方案

代码

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = Arrays.stream(nums).sum();

        //target过大的情况
        if(target<0 && Math.abs(target)>sum) return 0;

        //无法整除的情况
        if((target+sum)%2!=0) return 0;

        int left = (target+sum)/2;
        //背包容量为j时,有dp[j]种方法
        int[] dp = new int[left+1];
        //初始化
        dp[0] = 1;
        for(int i=0;i<nums.length;i++){
            for(int j=left;j>=nums[i];j--){
                dp[j] += dp[j-nums[i]];
            }
        }

        return dp[left];
    }
}


一和零

力扣连接:474. 一和零(中等)

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
  2. 确定递推公式
    dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
    dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
    然后我们在遍历的过程中,取dp[i][j]的最大值。
    所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

图解步骤

在这里插入图片描述

代码

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];

        for(String str: strs){
            int zeroNum = 0;
            int oneNum = 0;
            for(char ch: str.toCharArray()){
                if(ch=='1'){
                    oneNum++;
                }else{
                    zeroNum++;
                }
            }

            for(int i=m;i>=zeroNum;i--){
                for(int j=n;j>=oneNum;j--){
                    dp[i][j] = Math.max(dp[i][j], dp[i-zeroNum][j-oneNum]+1);
                }
            }

        }

        return dp[m][n];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值