背包问题总结篇

文章详细总结了背包问题中的01背包和完全背包,包括它们的关系、递推公式、初始化、遍历顺序。动态规划在解决这些问题时起到关键作用,通过dp数组来存储状态并进行优化。对于01背包,讨论了二维和一维数组的实现差异;而对于完全背包,区分了求组合数、排列数和最小数的不同遍历方式。
摘要由CSDN通过智能技术生成

背包问题总结篇

关于这几种常见的背包,其关系如下:
在这里插入图片描述

通过这个图,可以很清晰分清这几种常见背包之间的关系。

在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

背包递推公式


问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:


遍历顺序


01背包

在动态规划:关于01背包问题,二维实现 中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

和动态规划:关于01背包问题,一维数组(滚动数组) 中,我们讲解一维dp数组01背包只能先遍历物品遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的


完全背包

说完01背包,再看看完全背包。

在动态规划:关于完全背包问题,一维数组 中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

求组合数518.零钱兑换II
求排列数377. 组合总和 Ⅳ70. 爬楼梯进阶版(完全背包)

求最小数322. 零钱兑换279.完全平方数(那么两层for循环的先后顺序就无所谓了)


总结


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值