YOLOV8 如何训练自己的数据

1、git code 项目

地址

2、数据标注:使用yolov8官方推荐的roboflow

地址

2.1 上传数据

在这里插入图片描述

2.2 标注

在这里插入图片描述

2.3 生成数据集在这里插入图片描述

2.4 导出数据

在这里插入图片描述

3 训练

3.1 建.yaml 文件

建立.yaml 文件

在这里插入图片描述

3.2 修改.yaml文件里面的内容

1.这是roboflow 网站下下来的数据,只需要把.yaml文件中的path 改为该文件的路径即可。
2.修改class 的类名称
在这里插入图片描述

4 启动训练

 
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8m.yaml")  # build a new model from scratch
results = model.train(data="./PCB/gesture2.yaml", epochs=2000, imgsz=640, device=[0], batch=4, workers=0, amp=False)  # train the model
# results = model.train(data="pcb.yaml", epochs=20000,imgsz=640, device=[0], batch=4, workers=0)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
# results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format

4.1 yolov8 网络打印

在这里插入图片描述

4.2 loss 在下降

在这里插入图片描述

5 验证结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值