我们先讨论240题(Search a 2D Matrix II),因为74题(Search a 2D Matrix)可以使用240题的解题思路.
240:Search a 2D Matrix II原题:
原题分析:
对于这道题,如果想在这个矩阵中找到一个特定的数,除了遍历这个矩阵外(暴力解法),因为每行每列的元素都已经按照升序排列,所以很容易想到使用二分法进行査找,但是今天我们使用分治法进行解题.
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
解题思路:
注意上面的矩阵左下角或右上角元素是具有特殊性的.我们以右上角为例:
1.若右上角元素的值大于目标值,则最右列的所有值都大于目标值.
2.若右上角的值小于目标值,则顶行的所有值都小于目标值.
因此,将右上角的值与目标值进行比较,就可以排除最上面一行和最右边一列.接着在去除一行或一列后的矩阵的基础上再次将目标值与新的右上角的值进行比较,重复上述步骤,即可确定答案.
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix.length==0) {
return false;
}
int i,j;
int rows=matrix.length;
int cols=matrix[0].length;
i=0;
j=cols-1;
while(i<rows&&j>=0) {
if(matrix[i][j]==target) {
return true;
}else if(matrix[i][j]>target) {
j--;
}else {
i++;
}
}
return false;
}
以上方法仍然对74题适用.