FFT

12 篇文章 0 订阅
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
const double PI=acos(-1);
const int M=110000; 
struct complex{//虚数a+bi
	double a,b;complex(){}complex(double x,double y){a=x;b=y;}
	complex operator +(complex x)const{return complex (a+x.a,b+x.b);}
	complex operator -(complex x)const{return complex (a-x.a,b-x.b);}
	complex operator *(complex x)const{return complex (a*x.a-b*x.b,a*x.b+b*x.a);}
}a[M],b[M];
int n;
void fft(complex *a,int f){
	for(int i=0,j=0;i<n;i++){
		if(i>j) swap(a[i],a[j]);
		for(int l=n>>1;(j^=l)<l;l>>=1);
	}
	for(int i=1;i<n;i<<=1){complex w(cos(PI/i),f*sin(PI/i));
		for(int j=0;j<n;j+=(i<<1)){complex e(1,0);
			for(int k=0;k<i;k++,e=e*w){
				complex x=a[j+k],y=e*a[j+k+i];
				a[j+k]=x+y;a[j+k+i]=x-y;
			}
		}
	}
	if(f==-1) for(int i=0;i<n;i++) a[i].a/=n;
}
int main(){
	scanf("%d",&n);n--;
	for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
	for(int i=0;i<n;i++) b[i].a=-1.0/(double)(n-i)/(double)(n-i);
	for(int i=n+1;i<=2*n;i++) b[i].a=-b[2*n-i].a;
	int m=n*4;
	for(n=1;n<=m;n<<=1);
	fft(a,1);fft(b,1);
	for(int i=0;i<=n;i++) a[i]=a[i]*b[i]; 
	fft(a,-1);
	for(int i=m/4;i<=m/2;i++) printf("%.3lf\n",a[i].a);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值